/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 2*x^15 + x^14 + 2*x^13 - 13*x^12 + 12*x^10 + 7*x^8 + 12*x^6 - 13*x^4 + 2*x^3 + x^2 - 2*x + 1, 16, 382, [4, 6], 350749278894882816, [2, 3, 13], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, 1/3*a^10 - 1/3*a^8 - 1/3*a^7 - 1/3*a^5 - 1/3*a^3 - 1/3*a^2 + 1/3, 1/3*a^11 - 1/3*a^9 - 1/3*a^8 - 1/3*a^6 - 1/3*a^4 - 1/3*a^3 + 1/3*a, 1/3*a^12 - 1/3*a^9 - 1/3*a^8 + 1/3*a^7 + 1/3*a^5 - 1/3*a^4 - 1/3*a^3 + 1/3, 1/3*a^13 - 1/3*a^9 - 1/3*a^7 + 1/3*a^6 + 1/3*a^5 - 1/3*a^4 - 1/3*a^3 - 1/3*a^2 + 1/3*a + 1/3, 1/12387*a^14 + 440/4129*a^13 - 509/4129*a^12 - 931/12387*a^11 + 1174/12387*a^10 - 3674/12387*a^9 - 2486/12387*a^8 + 3866/12387*a^7 + 1643/12387*a^6 + 1528/4129*a^5 - 985/4129*a^4 - 5060/12387*a^3 - 5656/12387*a^2 + 440/4129*a + 4130/12387, 1/12387*a^15 - 1489/12387*a^13 - 81/4129*a^12 - 116/4129*a^11 - 850/12387*a^10 - 4381/12387*a^9 - 1298/12387*a^8 + 2032/4129*a^7 + 1183/4129*a^6 - 721/12387*a^5 - 2236/12387*a^4 - 3049/12387*a^3 - 707/4129*a^2 + 13/4129*a + 2809/12387], 0, 1, [], 0, [ (2902)/(12387)*a^(15) - (1552)/(4129)*a^(14) + (1382)/(4129)*a^(13) + (149)/(4129)*a^(12) - (10679)/(4129)*a^(11) - (9293)/(12387)*a^(10) - (9032)/(12387)*a^(9) + (8339)/(12387)*a^(8) + (16573)/(4129)*a^(7) + (15088)/(12387)*a^(6) + (70951)/(12387)*a^(5) + (19084)/(12387)*a^(4) + (7793)/(12387)*a^(3) + (257)/(4129)*a^(2) - (20918)/(12387)*a - (3584)/(12387) , a , (2999)/(4129)*a^(15) - (15413)/(12387)*a^(14) + (4624)/(12387)*a^(13) + (6322)/(4129)*a^(12) - (37143)/(4129)*a^(11) - (10343)/(4129)*a^(10) + (96800)/(12387)*a^(9) + (31336)/(12387)*a^(8) + (77597)/(12387)*a^(7) + (16910)/(12387)*a^(6) + (113561)/(12387)*a^(5) + (26515)/(12387)*a^(4) - (36344)/(4129)*a^(3) - (10435)/(12387)*a^(2) - (5788)/(12387)*a - (8191)/(12387) , (9031)/(12387)*a^(15) - (13723)/(12387)*a^(14) + (557)/(12387)*a^(13) + (23086)/(12387)*a^(12) - (111115)/(12387)*a^(11) - (53660)/(12387)*a^(10) + (105704)/(12387)*a^(9) + (38734)/(12387)*a^(8) + (71615)/(12387)*a^(7) + (12111)/(4129)*a^(6) + (38259)/(4129)*a^(5) + (24124)/(4129)*a^(4) - (122101)/(12387)*a^(3) - (28877)/(12387)*a^(2) + (4936)/(12387)*a - (8869)/(4129) , (641)/(4129)*a^(15) - (145)/(4129)*a^(14) - (2219)/(12387)*a^(13) + (2893)/(12387)*a^(12) - (5493)/(4129)*a^(11) - (13150)/(4129)*a^(10) - (9494)/(12387)*a^(9) + (30506)/(12387)*a^(8) + (10734)/(4129)*a^(7) + (32134)/(12387)*a^(6) + (46547)/(12387)*a^(5) + (49315)/(12387)*a^(4) + (20941)/(12387)*a^(3) - (24529)/(12387)*a^(2) - (11981)/(12387)*a - (3589)/(12387) , (2235)/(4129)*a^(15) - (9334)/(12387)*a^(14) + (233)/(12387)*a^(13) + (4579)/(4129)*a^(12) - (25456)/(4129)*a^(11) - (50528)/(12387)*a^(10) + (58678)/(12387)*a^(9) + (53863)/(12387)*a^(8) + (21620)/(4129)*a^(7) + (24736)/(12387)*a^(6) + (31121)/(4129)*a^(5) + (37430)/(12387)*a^(4) - (68521)/(12387)*a^(3) - (14203)/(4129)*a^(2) - (2705)/(12387)*a - (3229)/(12387) , (5952)/(4129)*a^(15) - (30572)/(12387)*a^(14) + (3037)/(4129)*a^(13) + (38702)/(12387)*a^(12) - (221374)/(12387)*a^(11) - (21197)/(4129)*a^(10) + (195302)/(12387)*a^(9) + (17385)/(4129)*a^(8) + (134879)/(12387)*a^(7) + (35702)/(12387)*a^(6) + (78580)/(4129)*a^(5) + (77605)/(12387)*a^(4) - (70441)/(4129)*a^(3) - (2892)/(4129)*a^(2) + (9764)/(4129)*a - (10720)/(4129) , (10280)/(12387)*a^(15) - (6139)/(4129)*a^(14) + (8653)/(12387)*a^(13) + (16661)/(12387)*a^(12) - (122977)/(12387)*a^(11) - (9308)/(4129)*a^(10) + (30432)/(4129)*a^(9) + (36830)/(12387)*a^(8) + (25241)/(4129)*a^(7) + (10444)/(12387)*a^(6) + (150454)/(12387)*a^(5) + (6198)/(4129)*a^(4) - (76313)/(12387)*a^(3) - (19136)/(12387)*a^(2) + (18035)/(12387)*a - (3955)/(4129) , (6665)/(12387)*a^(15) - (7867)/(12387)*a^(14) - (2203)/(12387)*a^(13) + (17137)/(12387)*a^(12) - (26014)/(4129)*a^(11) - (65611)/(12387)*a^(10) + (59087)/(12387)*a^(9) + (34535)/(12387)*a^(8) + (62807)/(12387)*a^(7) + (23885)/(4129)*a^(6) + (96016)/(12387)*a^(5) + (25929)/(4129)*a^(4) - (16288)/(4129)*a^(3) - (26024)/(12387)*a^(2) - (1442)/(4129)*a - (27413)/(12387) ], 218.035986284, [[x^2 - x - 3, 1], [x^4 - x^3 - x^2 - x + 1, 1], [x^4 - 3*x^2 - 1, 1], [x^4 - 5*x^2 + 3, 1], [x^8 - x^6 - x^4 - x^2 + 1, 1]]]