Normalized defining polynomial
\( x^{16} - 2x^{12} - 41x^{8} - 18x^{4} + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[4, 6]$ |
| |
Discriminant: |
\(16777216000000000000\)
\(\medspace = 2^{36}\cdot 5^{12}\)
|
| |
Root discriminant: | \(15.91\) |
| |
Galois root discriminant: | $2^{9/4}5^{3/4}\approx 15.905414575341013$ | ||
Ramified primes: |
\(2\), \(5\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{244}a^{12}-\frac{1}{4}a^{10}+\frac{2}{61}a^{8}-\frac{1}{4}a^{6}+\frac{25}{61}a^{4}-\frac{1}{4}a^{2}+\frac{67}{244}$, $\frac{1}{244}a^{13}-\frac{1}{4}a^{11}+\frac{2}{61}a^{9}-\frac{1}{4}a^{7}+\frac{25}{61}a^{5}-\frac{1}{4}a^{3}+\frac{67}{244}a$, $\frac{1}{244}a^{14}-\frac{53}{244}a^{10}-\frac{1}{4}a^{8}+\frac{39}{244}a^{6}-\frac{1}{4}a^{4}+\frac{3}{122}a^{2}-\frac{1}{4}$, $\frac{1}{244}a^{15}-\frac{53}{244}a^{11}-\frac{1}{4}a^{9}+\frac{39}{244}a^{7}-\frac{1}{4}a^{5}+\frac{3}{122}a^{3}-\frac{1}{4}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $9$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{25}{122}a^{14}-\frac{22}{61}a^{10}-\frac{519}{61}a^{6}-\frac{643}{122}a^{2}$, $a$, $\frac{5}{61}a^{15}+\frac{13}{244}a^{13}-\frac{23}{244}a^{11}-\frac{9}{122}a^{9}-\frac{867}{244}a^{7}-\frac{265}{122}a^{5}-\frac{1039}{244}a^{3}-\frac{471}{244}a$, $\frac{20}{61}a^{15}+\frac{37}{244}a^{13}-\frac{153}{244}a^{11}-\frac{35}{122}a^{9}-\frac{3285}{244}a^{7}-\frac{773}{122}a^{5}-\frac{1777}{244}a^{3}-\frac{815}{244}a$, $\frac{97}{244}a^{14}+\frac{7}{244}a^{12}-\frac{50}{61}a^{10}-\frac{5}{244}a^{8}-\frac{991}{61}a^{6}-\frac{337}{244}a^{4}-\frac{1553}{244}a^{2}-\frac{81}{61}$, $\frac{25}{244}a^{15}+\frac{25}{244}a^{14}+\frac{7}{244}a^{13}-\frac{5}{244}a^{12}-\frac{11}{61}a^{11}-\frac{11}{61}a^{10}-\frac{5}{244}a^{9}+\frac{21}{244}a^{8}-\frac{519}{122}a^{7}-\frac{519}{122}a^{6}-\frac{337}{244}a^{5}+\frac{171}{244}a^{4}-\frac{765}{244}a^{3}-\frac{643}{244}a^{2}-\frac{223}{122}a-\frac{15}{122}$, $\frac{117}{244}a^{15}+\frac{55}{244}a^{14}+\frac{9}{122}a^{13}+\frac{3}{122}a^{12}-\frac{223}{244}a^{11}-\frac{109}{244}a^{10}-\frac{39}{244}a^{9}-\frac{13}{244}a^{8}-\frac{4831}{244}a^{7}-\frac{2247}{244}a^{6}-\frac{701}{244}a^{5}-\frac{193}{244}a^{4}-\frac{1235}{122}a^{3}-\frac{253}{61}a^{2}-\frac{319}{244}a-\frac{269}{244}$, $\frac{25}{244}a^{15}+\frac{25}{122}a^{14}-\frac{5}{244}a^{13}-\frac{3}{61}a^{12}-\frac{11}{61}a^{11}-\frac{22}{61}a^{10}+\frac{21}{244}a^{9}+\frac{13}{122}a^{8}-\frac{519}{122}a^{7}-\frac{519}{61}a^{6}+\frac{171}{244}a^{5}+\frac{127}{61}a^{4}-\frac{643}{244}a^{3}-\frac{352}{61}a^{2}-\frac{137}{122}a+\frac{43}{61}$, $\frac{55}{244}a^{15}+\frac{25}{244}a^{14}-\frac{15}{122}a^{13}-\frac{5}{244}a^{12}-\frac{109}{244}a^{11}-\frac{11}{61}a^{10}+\frac{65}{244}a^{9}+\frac{21}{244}a^{8}-\frac{2247}{244}a^{7}-\frac{519}{122}a^{6}+\frac{1209}{244}a^{5}+\frac{171}{244}a^{4}-\frac{253}{61}a^{3}-\frac{643}{244}a^{2}+\frac{369}{244}a-\frac{15}{122}$
|
| |
Regulator: | \( 2006.84410169 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 2006.84410169 \cdot 1}{2\cdot\sqrt{16777216000000000000}}\cr\approx \mathstrut & 0.241169779069 \end{aligned}\] (assuming GRH)
Galois group
$C_4\wr C_2$ (as 16T28):
A solvable group of order 32 |
The 14 conjugacy class representatives for $C_4\wr C_2$ |
Character table for $C_4\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 4.2.400.1, 4.2.2000.1, 8.4.64000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 32 |
Degree 8 siblings: | 8.0.819200000.1, 8.0.32768000.1 |
Degree 16 sibling: | 16.0.671088640000000000.2 |
Minimal sibling: | 8.0.32768000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.36b1.11 | $x^{16} + 8 x^{15} + 36 x^{14} + 112 x^{13} + 268 x^{12} + 516 x^{11} + 826 x^{10} + 1116 x^{9} + 1287 x^{8} + 1268 x^{7} + 1070 x^{6} + 768 x^{5} + 470 x^{4} + 240 x^{3} + 106 x^{2} + 40 x + 13$ | $8$ | $2$ | $36$ | 16T28 | $$[2, 2, 3]^{4}$$ |
\(5\)
| 5.4.4.12a1.4 | $x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ |