Normalized defining polynomial
\( x^{16} - 2x^{14} - 11x^{12} + 4x^{10} + 6x^{8} - 34x^{6} - 36x^{4} - 8x^{2} + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(135895449600000000\)
\(\medspace = 2^{32}\cdot 3^{4}\cdot 5^{8}\)
|
| |
| Root discriminant: | \(11.77\) |
| |
| Galois root discriminant: | $2^{9/4}3^{1/2}5^{1/2}\approx 18.42311740638763$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{28}a^{12}-\frac{1}{4}a^{11}-\frac{5}{28}a^{10}-\frac{1}{4}a^{9}-\frac{1}{28}a^{8}+\frac{11}{28}a^{6}-\frac{1}{28}a^{4}-\frac{1}{4}a^{3}+\frac{3}{7}a^{2}-\frac{1}{2}a-\frac{11}{28}$, $\frac{1}{28}a^{13}+\frac{1}{14}a^{11}+\frac{3}{14}a^{9}-\frac{1}{4}a^{8}+\frac{11}{28}a^{7}+\frac{1}{4}a^{6}-\frac{1}{28}a^{5}-\frac{1}{2}a^{4}-\frac{9}{28}a^{3}+\frac{3}{28}a-\frac{1}{4}$, $\frac{1}{1148}a^{14}+\frac{11}{1148}a^{12}-\frac{1}{4}a^{11}+\frac{255}{1148}a^{10}-\frac{83}{574}a^{8}-\frac{1}{4}a^{7}+\frac{11}{41}a^{6}-\frac{1}{2}a^{5}-\frac{65}{574}a^{4}-\frac{1}{4}a^{3}-\frac{127}{1148}a^{2}-\frac{1}{4}a+\frac{391}{1148}$, $\frac{1}{1148}a^{15}+\frac{11}{1148}a^{13}-\frac{8}{287}a^{11}-\frac{1}{4}a^{10}+\frac{121}{1148}a^{9}-\frac{19}{82}a^{7}-\frac{1}{4}a^{6}-\frac{65}{574}a^{5}-\frac{1}{2}a^{4}-\frac{207}{574}a^{3}-\frac{1}{4}a^{2}+\frac{391}{1148}a-\frac{1}{4}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{235}{287}a^{15}-\frac{1185}{574}a^{13}-\frac{4503}{574}a^{11}+\frac{4103}{574}a^{9}+\frac{235}{574}a^{7}-\frac{15713}{574}a^{5}-\frac{4548}{287}a^{3}-\frac{607}{574}a$, $\frac{55}{164}a^{15}-\frac{13}{287}a^{14}-\frac{284}{287}a^{13}-\frac{39}{1148}a^{12}-\frac{3259}{1148}a^{11}+\frac{36}{41}a^{10}+\frac{1222}{287}a^{9}+\frac{33}{41}a^{8}-\frac{1345}{1148}a^{7}-\frac{2117}{1148}a^{6}-\frac{12535}{1148}a^{5}+\frac{2783}{1148}a^{4}-\frac{426}{287}a^{3}+\frac{5825}{1148}a^{2}+\frac{1201}{574}a+\frac{783}{1148}$, $\frac{122}{287}a^{14}-\frac{339}{287}a^{12}-\frac{313}{82}a^{10}+\frac{393}{82}a^{8}-\frac{144}{287}a^{6}-\frac{4134}{287}a^{4}-\frac{2165}{574}a^{2}+\frac{470}{287}$, $\frac{26}{287}a^{15}-\frac{207}{574}a^{13}-\frac{176}{287}a^{11}+\frac{1331}{574}a^{9}-\frac{151}{287}a^{7}-\frac{2537}{574}a^{5}+\frac{2129}{574}a^{3}+\frac{1105}{287}a$, $\frac{1011}{1148}a^{15}-\frac{489}{1148}a^{14}-\frac{2491}{1148}a^{13}+\frac{1345}{1148}a^{12}-\frac{9925}{1148}a^{11}+\frac{2207}{574}a^{10}+\frac{8515}{1148}a^{9}-\frac{1334}{287}a^{8}+\frac{1797}{1148}a^{7}+\frac{555}{1148}a^{6}-\frac{8647}{287}a^{5}+\frac{4023}{287}a^{4}-\frac{20239}{1148}a^{3}+\frac{1473}{287}a^{2}+\frac{5}{287}a-\frac{209}{287}$, $\frac{10}{41}a^{15}-\frac{67}{82}a^{13}-\frac{74}{41}a^{11}+\frac{329}{82}a^{9}-\frac{77}{41}a^{7}-\frac{673}{82}a^{5}+\frac{207}{82}a^{3}+\frac{138}{41}a$, $\frac{523}{574}a^{15}-\frac{1135}{574}a^{13}-\frac{5543}{574}a^{11}+\frac{3013}{574}a^{9}+\frac{339}{82}a^{7}-\frac{9026}{287}a^{5}-\frac{15335}{574}a^{3}-\frac{1504}{287}a$, $\frac{331}{1148}a^{15}+\frac{55}{164}a^{14}-\frac{248}{287}a^{13}-\frac{284}{287}a^{12}-\frac{1319}{574}a^{11}-\frac{3259}{1148}a^{10}+\frac{1965}{574}a^{9}+\frac{1222}{287}a^{8}-\frac{1055}{574}a^{7}-\frac{1345}{1148}a^{6}-\frac{9123}{1148}a^{5}-\frac{12535}{1148}a^{4}-\frac{2349}{1148}a^{3}-\frac{426}{287}a^{2}-\frac{713}{1148}a+\frac{1201}{574}$, $\frac{471}{1148}a^{15}+\frac{219}{574}a^{14}-\frac{197}{164}a^{13}-\frac{543}{574}a^{12}-\frac{1021}{287}a^{11}-\frac{4299}{1148}a^{10}+\frac{6151}{1148}a^{9}+\frac{1899}{574}a^{8}-\frac{569}{574}a^{7}+\frac{793}{1148}a^{6}-\frac{1199}{82}a^{5}-\frac{7437}{574}a^{4}-\frac{117}{82}a^{3}-\frac{7943}{1148}a^{2}+\frac{3761}{1148}a-\frac{573}{1148}$
|
| |
| Regulator: | \( 117.610418303 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 117.610418303 \cdot 1}{2\cdot\sqrt{135895449600000000}}\cr\approx \mathstrut & 0.157040812789 \end{aligned}\]
Galois group
| A solvable group of order 64 |
| The 25 conjugacy class representatives for $D_4:D_4$ |
| Character table for $D_4:D_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.2.400.1, 4.2.1600.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.368640000.1, 8.4.23040000.1, 8.4.40960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.42998169600000000.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.4.32b25.7 | $x^{16} + 4 x^{15} + 8 x^{13} + 18 x^{12} + 12 x^{11} + 20 x^{10} + 44 x^{9} + 36 x^{8} + 32 x^{7} + 58 x^{6} + 56 x^{5} + 33 x^{4} + 32 x^{3} + 38 x^{2} + 24 x + 9$ | $4$ | $4$ | $32$ | $C_2 \times (C_2^2:C_4)$ | $$[2, 2, 3]^{4}$$ |
|
\(3\)
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |