Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $115$ | |
| Group : | $(C_2\times D_4):C_2^2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,10,2,9)(3,11,4,12)(5,14,6,13)(7,15,8,16), (1,5)(2,6)(3,16)(4,15)(7,12)(8,11)(9,14)(10,13), (1,16)(2,15)(7,10)(8,9), (1,2)(7,10)(8,9)(11,13)(12,14)(15,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $D_{4}$ x 4, $C_2^3$ x 15 16: $D_4\times C_2$ x 6, $Q_8:C_2$ x 2, $C_2^4$ 32: $C_2^3 : D_4 $, $C_2 \times (C_4\times C_2):C_2$, $C_2^2 \times D_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $Q_8:C_2$, $C_2^3 : D_4 $
Low degree siblings
16T115 x 7, 32T120 x 2, 32T121 x 4, 32T122 x 2, 32T225Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3, 5)( 4, 6)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3, 6)( 4, 5)( 7, 9)( 8,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 5)( 4, 6)( 7,10)( 8, 9)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 6)( 4, 5)( 7, 8)( 9,10)(11,13)(12,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5,15, 6,16)( 7,11, 8,12)( 9,13,10,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3,15, 6)( 2, 4,16, 5)( 7,11, 9,13)( 8,12,10,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3,16, 5)( 2, 4,15, 6)( 7,13,10,12)( 8,14, 9,11)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7, 2, 8)( 3,11, 4,12)( 5,14, 6,13)( 9,16,10,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7,16,10)( 2, 8,15, 9)( 3,12, 5,13)( 4,11, 6,14)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7,16,10)( 2, 8,15, 9)( 3,13, 5,12)( 4,14, 6,11)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3,14, 4,13)( 5,11, 6,12)( 9,16,10,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 8, 2, 7)( 3,12, 4,11)( 5,13, 6,14)( 9,15,10,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 8,16, 9)( 2, 7,15,10)( 3,14, 5,11)( 4,13, 6,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11,16,14)( 2,12,15,13)( 3, 7, 5,10)( 4, 8, 6, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,11)( 2,12)( 3, 8)( 4, 7)( 5, 9)( 6,10)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,11,16,14)( 2,12,15,13)( 3, 9, 5, 8)( 4,10, 6, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5, 7)( 6, 8)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,12)( 2,11)( 3, 7)( 4, 8)( 5,10)( 6, 9)(13,16)(14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,12,16,13)( 2,11,15,14)( 3,10, 5, 7)( 4, 9, 6, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,15)( 2,16)( 3, 6)( 4, 5)( 7, 9)( 8,10)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,16)( 2,15)( 3, 5)( 4, 6)( 7,10)( 8, 9)(11,14)(12,13)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 227] |
| Character table: Data not available. |