Normalized defining polynomial
\( x^{16} - 5 x^{15} - 826 x^{14} + 3919 x^{13} + 163389 x^{12} - 1327426 x^{11} - 5307893 x^{10} + 66746609 x^{9} + 35529210 x^{8} - 1329168051 x^{7} + 432751103 x^{6} + 12242227394 x^{5} - 4542410360 x^{4} - 48328678280 x^{3} + 7339560560 x^{2} + 60542675904 x + 12486085888 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21767174858780577201904716993499183222663790161=13^{14}\cdot 157^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $787.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{56} a^{12} + \frac{1}{28} a^{11} - \frac{1}{14} a^{10} - \frac{1}{56} a^{9} - \frac{1}{28} a^{8} - \frac{1}{14} a^{7} - \frac{13}{56} a^{6} - \frac{1}{4} a^{5} + \frac{1}{14} a^{4} - \frac{3}{56} a^{3} - \frac{1}{28} a^{2} - \frac{1}{2} a + \frac{3}{7}$, $\frac{1}{1120} a^{13} + \frac{1}{560} a^{12} + \frac{1}{112} a^{11} - \frac{71}{1120} a^{10} - \frac{1}{70} a^{9} - \frac{3}{56} a^{8} - \frac{41}{1120} a^{7} + \frac{19}{80} a^{6} - \frac{15}{112} a^{5} - \frac{37}{224} a^{4} - \frac{39}{280} a^{3} - \frac{3}{20} a^{2} - \frac{11}{140} a - \frac{2}{5}$, $\frac{1}{15680} a^{14} - \frac{1}{7840} a^{13} - \frac{19}{7840} a^{12} + \frac{649}{15680} a^{11} - \frac{313}{3920} a^{10} - \frac{129}{3920} a^{9} + \frac{1399}{15680} a^{8} + \frac{59}{1568} a^{7} - \frac{1187}{7840} a^{6} + \frac{475}{3136} a^{5} + \frac{123}{1960} a^{4} - \frac{61}{245} a^{3} + \frac{83}{1960} a^{2} + \frac{207}{490} a - \frac{22}{245}$, $\frac{1}{66962209866020606016988158331697307198178239004987483669578560} a^{15} - \frac{55805784734450652364854679545635966755958196663636605195}{1913205996172017314771090238048494491376521114428213819130816} a^{14} - \frac{170144344908910504764972472803164791755047428483970031767}{4783014990430043286927725595121236228441302786070534547827040} a^{13} + \frac{577137749155018826180000590691288706517174147861192817983671}{66962209866020606016988158331697307198178239004987483669578560} a^{12} - \frac{3309617681867348817325399278832592730089124819090910607009719}{66962209866020606016988158331697307198178239004987483669578560} a^{11} - \frac{651852319753316902647199343845084105327663764304709676306117}{33481104933010303008494079165848653599089119502493741834789280} a^{10} - \frac{5663343598216195976351836302028313067427941039945536782215597}{66962209866020606016988158331697307198178239004987483669578560} a^{9} + \frac{51976941833774115601962846897193170737466311833424038049517}{1366575711551440939122207312891781779554657938877295585093440} a^{8} + \frac{3969283720712964576334222880401303489305652103216264502144921}{33481104933010303008494079165848653599089119502493741834789280} a^{7} + \frac{205105155781723314401454583202531115722360522550878919636803}{9566029980860086573855451190242472456882605572141069095654080} a^{6} - \frac{4940598506784867031861073318233794040940634269501752855730381}{66962209866020606016988158331697307198178239004987483669578560} a^{5} - \frac{5356789600621064495117872920999259998526773835011471072854083}{33481104933010303008494079165848653599089119502493741834789280} a^{4} + \frac{806594596790198509271065386534493413753031414381704224263277}{4185138116626287876061759895731081699886139937811717729348660} a^{3} + \frac{213631934178597687321138150625619815226106743765112850491}{239150749521502164346386279756061811422065139303526727391352} a^{2} + \frac{1930571529572110427810876154214245869555605772222917762371853}{4185138116626287876061759895731081699886139937811717729348660} a + \frac{176610338315453300819217733363139789218265348649097433933598}{1046284529156571969015439973932770424971534984452929432337165}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2472425742860000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $157$ | 157.8.7.2 | $x^{8} - 3925$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 157.8.7.2 | $x^{8} - 3925$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |