Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $36$ | |
| Group : | $C_2^3.C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,3,6,8,10,12,13,15)(2,4,5,7,9,11,14,16), (1,2)(3,11)(4,12)(5,13)(6,14)(7,8)(9,10)(15,16) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_4\times C_2$, $(C_8:C_2):C_2$ x 2
Low degree siblings
8T16 x 2, 16T41 x 2, 32T22Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)(11,12)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3, 6, 8,10,12,13,15)( 2, 4, 5, 7, 9,11,14,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 4, 6,16,10,11,13, 7)( 2, 3, 5,15, 9,12,14, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3, 8,12,15)( 4, 7,11,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3,15,12, 8)( 4,16,11, 7)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7,13,11,10,16, 6, 4)( 2, 8,14,12, 9,15, 5, 3)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8, 6,12,10,15,13, 3)( 2, 7, 5,11, 9,16,14, 4)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 7] |
| Character table: |
2 5 4 3 3 3 3 4 4 3 3 5
1a 2a 2b 8a 8b 2c 4a 4b 8c 8d 2d
2P 1a 1a 1a 4a 4b 1a 2d 2d 4b 4a 1a
3P 1a 2a 2b 8d 8c 2c 4a 4b 8b 8a 2d
5P 1a 2a 2b 8a 8b 2c 4a 4b 8c 8d 2d
7P 1a 2a 2b 8d 8c 2c 4a 4b 8b 8a 2d
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 1 1 1 -1 1
X.3 1 1 -1 1 -1 -1 1 1 -1 1 1
X.4 1 1 1 -1 -1 1 1 1 -1 -1 1
X.5 1 1 -1 A -A 1 -1 -1 A -A 1
X.6 1 1 -1 -A A 1 -1 -1 -A A 1
X.7 1 1 1 A A -1 -1 -1 -A -A 1
X.8 1 1 1 -A -A -1 -1 -1 A A 1
X.9 2 -2 . . . . -2 2 . . 2
X.10 2 -2 . . . . 2 -2 . . 2
X.11 4 . . . . . . . . . -4
A = -E(4)
= -Sqrt(-1) = -i
|