Normalized defining polynomial
\( x^{16} - 48x^{14} + 772x^{12} - 5792x^{10} + 22430x^{8} - 45872x^{6} + 47348x^{4} - 21056x^{2} + 2209 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[16, 0]$ |
| |
Discriminant: |
\(12725851295326073899065850986496\)
\(\medspace = 2^{70}\cdot 47^{6}\)
|
| |
Root discriminant: | \(87.91\) |
| |
Galois root discriminant: | $2^{305/64}47^{1/2}\approx 186.48547112066305$ | ||
Ramified primes: |
\(2\), \(47\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}-\frac{1}{4}a^{4}+\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{9}-\frac{1}{4}a^{5}+\frac{1}{4}a$, $\frac{1}{29547985756}a^{14}-\frac{653429497}{7386996439}a^{12}-\frac{6402736613}{29547985756}a^{10}-\frac{606688775}{7386996439}a^{8}+\frac{6274428947}{29547985756}a^{6}-\frac{73897785}{157170137}a^{4}+\frac{14759712605}{29547985756}a^{2}+\frac{20175521}{157170137}$, $\frac{1}{29547985756}a^{15}-\frac{653429497}{7386996439}a^{13}+\frac{492129913}{14773992878}a^{11}-\frac{1}{4}a^{10}+\frac{4960241339}{29547985756}a^{9}-\frac{1}{4}a^{8}+\frac{6274428947}{29547985756}a^{7}-\frac{73897785}{157170137}a^{5}+\frac{3686358083}{14773992878}a^{3}+\frac{1}{4}a^{2}-\frac{76468053}{628680548}a+\frac{1}{4}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH) |
|
Unit group
Rank: | $15$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{6914}{8038081}a^{14}-\frac{312508}{8038081}a^{12}+\frac{4453068}{8038081}a^{10}-\frac{54220673}{16076162}a^{8}+\frac{71496502}{8038081}a^{6}-\frac{1356179}{171023}a^{4}-\frac{10096680}{8038081}a^{2}+\frac{938539}{342046}$, $\frac{54876391}{14773992878}a^{14}-\frac{5137482701}{29547985756}a^{12}+\frac{39305655133}{14773992878}a^{10}-\frac{542038676239}{29547985756}a^{8}+\frac{907977937283}{14773992878}a^{6}-\frac{61030361993}{628680548}a^{4}+\frac{878725072813}{14773992878}a^{2}-\frac{3188351007}{628680548}$, $\frac{18896216}{7386996439}a^{14}-\frac{3533564509}{29547985756}a^{12}+\frac{13474004508}{7386996439}a^{10}-\frac{368992552275}{29547985756}a^{8}+\frac{305218873337}{7386996439}a^{6}-\frac{40594060949}{628680548}a^{4}+\frac{306723623701}{7386996439}a^{2}-\frac{4831420007}{628680548}$, $\frac{6052505}{29547985756}a^{14}-\frac{223980319}{29547985756}a^{12}+\frac{1626929019}{29547985756}a^{10}+\frac{9153949467}{29547985756}a^{8}-\frac{137221229059}{29547985756}a^{6}+\frac{10089703383}{628680548}a^{4}-\frac{624073098441}{29547985756}a^{2}+\frac{6002530177}{628680548}$, $\frac{54558063}{7386996439}a^{14}-\frac{5037942347}{14773992878}a^{12}+\frac{75208452341}{14773992878}a^{10}-\frac{250993979086}{7386996439}a^{8}+\frac{1614961614633}{14773992878}a^{6}-\frac{25874207469}{157170137}a^{4}+\frac{711632088275}{7386996439}a^{2}-\frac{3422216537}{314340274}$, $\frac{54876391}{14773992878}a^{15}+\frac{56660765}{29547985756}a^{14}-\frac{5137482701}{29547985756}a^{13}-\frac{1305816021}{14773992878}a^{12}+\frac{39305655133}{14773992878}a^{11}+\frac{38997056051}{29547985756}a^{10}-\frac{542038676239}{29547985756}a^{9}-\frac{131746049189}{14773992878}a^{8}+\frac{907977937283}{14773992878}a^{7}+\frac{882442969891}{29547985756}a^{6}-\frac{61030361993}{628680548}a^{5}-\frac{15573873227}{314340274}a^{4}+\frac{878725072813}{14773992878}a^{3}+\frac{1030254862041}{29547985756}a^{2}-\frac{3188351007}{628680548}a-\frac{1483474333}{314340274}$, $\frac{279902577}{14773992878}a^{14}-\frac{13004415053}{14773992878}a^{12}+\frac{196136807817}{14773992878}a^{10}-\frac{1322354176081}{14773992878}a^{8}+\frac{2141350563178}{7386996439}a^{6}-\frac{68717894478}{157170137}a^{4}+\frac{1889270683415}{7386996439}a^{2}-\frac{5168029160}{157170137}$, $\frac{92668823}{14773992878}a^{15}+\frac{211740487}{29547985756}a^{14}-\frac{4335523605}{14773992878}a^{13}-\frac{9849037753}{29547985756}a^{12}+\frac{66253664149}{14773992878}a^{11}+\frac{148946388695}{29547985756}a^{10}-\frac{455515614257}{14773992878}a^{9}-\frac{1009818773267}{29547985756}a^{8}+\frac{1518415683957}{14773992878}a^{7}+\frac{3305534611371}{29547985756}a^{6}-\frac{50812211471}{314340274}a^{5}-\frac{107957830367}{628680548}a^{4}+\frac{1492172320215}{14773992878}a^{3}+\frac{3050735395787}{29547985756}a^{2}-\frac{4324225781}{314340274}a-\frac{7919216905}{628680548}$, $\frac{189303577}{14773992878}a^{15}+\frac{491919363}{29547985756}a^{14}-\frac{8950897971}{14773992878}a^{13}-\frac{5743487425}{7386996439}a^{12}+\frac{279231100385}{29547985756}a^{11}+\frac{87550488785}{7386996439}a^{10}-\frac{1983005461319}{29547985756}a^{9}-\frac{2405770517047}{29547985756}a^{8}+\frac{1735268002024}{7386996439}a^{7}+\frac{8062187850261}{29547985756}a^{6}-\frac{62152832082}{157170137}a^{5}-\frac{68843463986}{157170137}a^{4}+\frac{7973613953129}{29547985756}a^{3}+\frac{2098587739121}{7386996439}a^{2}-\frac{22194646453}{628680548}a-\frac{20592226491}{628680548}$, $\frac{13984367}{29547985756}a^{15}+\frac{11431497}{29547985756}a^{14}-\frac{783681841}{29547985756}a^{13}-\frac{365097567}{29547985756}a^{12}+\frac{3960843202}{7386996439}a^{11}+\frac{131526290}{7386996439}a^{10}-\frac{37947263706}{7386996439}a^{9}+\frac{26065728925}{14773992878}a^{8}+\frac{730188043209}{29547985756}a^{7}-\frac{467366901857}{29547985756}a^{6}-\frac{35272779061}{628680548}a^{5}+\frac{30287465057}{628680548}a^{4}+\frac{345212893457}{7386996439}a^{3}-\frac{354491742377}{7386996439}a^{2}-\frac{352483836}{157170137}a+\frac{1567485013}{314340274}$, $\frac{12542250}{7386996439}a^{15}+\frac{22053587}{29547985756}a^{14}-\frac{2384785101}{29547985756}a^{13}-\frac{251211807}{7386996439}a^{12}+\frac{9381635016}{7386996439}a^{11}+\frac{14438176849}{29547985756}a^{10}-\frac{269334955301}{29547985756}a^{9}-\frac{43567440935}{14773992878}a^{8}+\frac{239513587999}{7386996439}a^{7}+\frac{225752741719}{29547985756}a^{6}-\frac{35608746945}{628680548}a^{5}-\frac{2541371259}{314340274}a^{4}+\frac{316002472621}{7386996439}a^{3}+\frac{109381141221}{29547985756}a^{2}-\frac{5299093593}{628680548}a-\frac{234908104}{157170137}$, $\frac{55304534}{7386996439}a^{14}-\frac{2619228183}{7386996439}a^{12}+\frac{81935961675}{14773992878}a^{10}-\frac{291872470289}{7386996439}a^{8}+\frac{1023877528988}{7386996439}a^{6}-\frac{36563330247}{157170137}a^{4}+\frac{2301569142579}{14773992878}a^{2}-\frac{2709179325}{157170137}$, $\frac{222310803}{29547985756}a^{15}+\frac{281263525}{29547985756}a^{14}-\frac{10241442743}{29547985756}a^{13}-\frac{13007511617}{29547985756}a^{12}+\frac{151904668843}{29547985756}a^{11}+\frac{194192220361}{29547985756}a^{10}-\frac{996562071319}{29547985756}a^{9}-\frac{1283746133981}{29547985756}a^{8}+\frac{3080937795997}{29547985756}a^{7}+\frac{4019861236161}{29547985756}a^{6}-\frac{90710939651}{628680548}a^{5}-\frac{123108629407}{628680548}a^{4}+\frac{1985894966829}{29547985756}a^{3}+\frac{3261930268305}{29547985756}a^{2}+\frac{1778377701}{628680548}a-\frac{8702127603}{628680548}$, $\frac{101318933}{14773992878}a^{15}+\frac{2765409}{157170137}a^{14}-\frac{9158293333}{29547985756}a^{13}-\frac{253809571}{314340274}a^{12}+\frac{65401411169}{14773992878}a^{11}+\frac{3737724023}{314340274}a^{10}-\frac{808815055427}{29547985756}a^{9}-\frac{24289161973}{314340274}a^{8}+\frac{574273671080}{7386996439}a^{7}+\frac{37228459277}{157170137}a^{6}-\frac{62617046935}{628680548}a^{5}-\frac{104498532461}{314340274}a^{4}+\frac{394914915719}{7386996439}a^{3}+\frac{57227732205}{314340274}a^{2}-\frac{4613649289}{628680548}a-\frac{5972093545}{314340274}$, $\frac{970484803}{29547985756}a^{15}-\frac{331381931}{14773992878}a^{14}-\frac{45465789379}{29547985756}a^{13}+\frac{30522329209}{29547985756}a^{12}+\frac{174390351054}{7386996439}a^{11}-\frac{452253241721}{29547985756}a^{10}-\frac{1212349919229}{7386996439}a^{9}+\frac{1479231408111}{14773992878}a^{8}+\frac{16633789008545}{29547985756}a^{7}-\frac{2271204811662}{7386996439}a^{6}-\frac{598633393163}{628680548}a^{5}+\frac{262411852219}{628680548}a^{4}+\frac{5346441671555}{7386996439}a^{3}-\frac{5156074156505}{29547985756}a^{2}-\frac{30225847963}{157170137}a-\frac{3492079126}{157170137}$
|
| |
Regulator: | \( 39170296162.0 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{16}\cdot(2\pi)^{0}\cdot 39170296162.0 \cdot 1}{2\cdot\sqrt{12725851295326073899065850986496}}\cr\approx \mathstrut & 0.359801830189 \end{aligned}\] (assuming GRH)
Galois group
$C_4^2.(C_2\times C_4)$ (as 16T362):
A solvable group of order 128 |
The 14 conjugacy class representatives for $C_4^2.(C_2\times C_4)$ |
Character table for $C_4^2.(C_2\times C_4)$ |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.592973922304.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Arithmetically equivalent siblings: | data not computed |
Minimal sibling: | 16.16.12725851295326073899065850986496.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.70e1.3402 | $x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 56 x^{4} + 2$ | $16$ | $1$ | $70$ | 16T362 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]$$ |
\(47\)
| $\Q_{47}$ | $x + 42$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{47}$ | $x + 42$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
47.1.2.1a1.2 | $x^{2} + 235$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
47.1.2.1a1.1 | $x^{2} + 47$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
47.2.1.0a1.1 | $x^{2} + 45 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
47.1.2.1a1.2 | $x^{2} + 235$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
47.1.2.1a1.2 | $x^{2} + 235$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
47.2.2.2a1.2 | $x^{4} + 90 x^{3} + 2035 x^{2} + 450 x + 72$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |