Properties

Label 16.12.371...544.1
Degree $16$
Signature $[12, 2]$
Discriminant $3.714\times 10^{26}$
Root discriminant \(45.77\)
Ramified primes $2,3,199$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^7:F_8:C_3$ (as 16T1800)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 28*x^14 + 2*x^13 + 244*x^12 + 152*x^11 - 862*x^10 - 314*x^9 + 2403*x^8 - 240*x^7 - 6194*x^6 - 1726*x^5 + 5894*x^4 + 2718*x^3 - 1890*x^2 - 920*x + 103)
 
Copy content gp:K = bnfinit(y^16 - 2*y^15 - 28*y^14 + 2*y^13 + 244*y^12 + 152*y^11 - 862*y^10 - 314*y^9 + 2403*y^8 - 240*y^7 - 6194*y^6 - 1726*y^5 + 5894*y^4 + 2718*y^3 - 1890*y^2 - 920*y + 103, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 - 28*x^14 + 2*x^13 + 244*x^12 + 152*x^11 - 862*x^10 - 314*x^9 + 2403*x^8 - 240*x^7 - 6194*x^6 - 1726*x^5 + 5894*x^4 + 2718*x^3 - 1890*x^2 - 920*x + 103);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 2*x^15 - 28*x^14 + 2*x^13 + 244*x^12 + 152*x^11 - 862*x^10 - 314*x^9 + 2403*x^8 - 240*x^7 - 6194*x^6 - 1726*x^5 + 5894*x^4 + 2718*x^3 - 1890*x^2 - 920*x + 103)
 

\( x^{16} - 2 x^{15} - 28 x^{14} + 2 x^{13} + 244 x^{12} + 152 x^{11} - 862 x^{10} - 314 x^{9} + 2403 x^{8} + \cdots + 103 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[12, 2]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(371353068328608385984364544\) \(\medspace = 2^{24}\cdot 3^{2}\cdot 199^{8}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.77\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(199\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{10}+\frac{1}{4}a^{6}-\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}+\frac{1}{4}a^{7}-\frac{1}{4}a^{3}+\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{6}+\frac{1}{4}a^{4}-\frac{1}{4}$, $\frac{1}{20\cdots 16}a^{15}+\frac{235715717193499}{30\cdots 37}a^{14}-\frac{193181018550235}{51\cdots 29}a^{13}+\frac{28\cdots 82}{51\cdots 29}a^{12}+\frac{790225702371783}{12\cdots 48}a^{11}+\frac{37\cdots 02}{51\cdots 29}a^{10}+\frac{17\cdots 01}{15\cdots 32}a^{9}+\frac{11\cdots 55}{51\cdots 29}a^{8}+\frac{74\cdots 73}{20\cdots 16}a^{7}-\frac{76\cdots 00}{51\cdots 29}a^{6}-\frac{52\cdots 01}{15\cdots 32}a^{5}-\frac{27\cdots 89}{51\cdots 29}a^{4}-\frac{10\cdots 13}{51\cdots 29}a^{3}-\frac{20\cdots 31}{51\cdots 29}a^{2}+\frac{20\cdots 33}{20\cdots 16}a+\frac{13\cdots 06}{51\cdots 29}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $13$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{20\cdots 16}{51\cdots 29}a^{15}-\frac{16\cdots 57}{12\cdots 48}a^{14}-\frac{18\cdots 09}{20\cdots 16}a^{13}+\frac{69\cdots 38}{51\cdots 29}a^{12}+\frac{93\cdots 35}{12\cdots 48}a^{11}-\frac{98\cdots 35}{20\cdots 16}a^{10}-\frac{21\cdots 33}{79\cdots 66}a^{9}+\frac{53\cdots 43}{20\cdots 16}a^{8}+\frac{12\cdots 49}{20\cdots 16}a^{7}-\frac{18\cdots 73}{20\cdots 16}a^{6}-\frac{93\cdots 09}{79\cdots 66}a^{5}+\frac{19\cdots 97}{20\cdots 16}a^{4}+\frac{21\cdots 19}{20\cdots 16}a^{3}-\frac{18\cdots 88}{51\cdots 29}a^{2}-\frac{59\cdots 99}{20\cdots 16}a+\frac{68\cdots 91}{20\cdots 16}$, $\frac{69\cdots 95}{20\cdots 16}a^{15}-\frac{69\cdots 79}{60\cdots 74}a^{14}-\frac{16\cdots 51}{20\cdots 16}a^{13}+\frac{24\cdots 97}{20\cdots 16}a^{12}+\frac{40\cdots 51}{60\cdots 74}a^{11}-\frac{86\cdots 69}{20\cdots 16}a^{10}-\frac{37\cdots 23}{15\cdots 32}a^{9}+\frac{23\cdots 67}{10\cdots 58}a^{8}+\frac{53\cdots 99}{10\cdots 58}a^{7}-\frac{16\cdots 79}{20\cdots 16}a^{6}-\frac{16\cdots 09}{15\cdots 32}a^{5}+\frac{89\cdots 73}{10\cdots 58}a^{4}+\frac{18\cdots 25}{20\cdots 16}a^{3}-\frac{65\cdots 07}{20\cdots 16}a^{2}-\frac{26\cdots 45}{10\cdots 58}a+\frac{54\cdots 35}{20\cdots 16}$, $\frac{48\cdots 59}{20\cdots 16}a^{15}-\frac{23\cdots 36}{30\cdots 37}a^{14}-\frac{56\cdots 35}{10\cdots 58}a^{13}+\frac{16\cdots 19}{20\cdots 16}a^{12}+\frac{56\cdots 85}{12\cdots 48}a^{11}-\frac{55\cdots 81}{20\cdots 16}a^{10}-\frac{26\cdots 27}{15\cdots 32}a^{9}+\frac{76\cdots 42}{51\cdots 29}a^{8}+\frac{74\cdots 91}{20\cdots 16}a^{7}-\frac{11\cdots 03}{20\cdots 16}a^{6}-\frac{11\cdots 65}{15\cdots 32}a^{5}+\frac{28\cdots 60}{51\cdots 29}a^{4}+\frac{32\cdots 53}{51\cdots 29}a^{3}-\frac{40\cdots 73}{20\cdots 16}a^{2}-\frac{35\cdots 65}{20\cdots 16}a+\frac{36\cdots 59}{20\cdots 16}$, $\frac{44\cdots 61}{20\cdots 16}a^{15}-\frac{89\cdots 87}{12\cdots 48}a^{14}-\frac{10\cdots 97}{20\cdots 16}a^{13}+\frac{15\cdots 23}{20\cdots 16}a^{12}+\frac{12\cdots 62}{30\cdots 37}a^{11}-\frac{28\cdots 29}{10\cdots 58}a^{10}-\frac{23\cdots 27}{15\cdots 32}a^{9}+\frac{30\cdots 01}{20\cdots 16}a^{8}+\frac{16\cdots 29}{51\cdots 29}a^{7}-\frac{53\cdots 89}{10\cdots 58}a^{6}-\frac{95\cdots 25}{15\cdots 32}a^{5}+\frac{11\cdots 95}{20\cdots 16}a^{4}+\frac{10\cdots 85}{20\cdots 16}a^{3}-\frac{38\cdots 45}{20\cdots 16}a^{2}-\frac{67\cdots 90}{51\cdots 29}a+\frac{70\cdots 76}{51\cdots 29}$, $\frac{26\cdots 23}{20\cdots 16}a^{15}-\frac{13\cdots 27}{30\cdots 37}a^{14}-\frac{15\cdots 34}{51\cdots 29}a^{13}+\frac{22\cdots 40}{51\cdots 29}a^{12}+\frac{30\cdots 51}{12\cdots 48}a^{11}-\frac{15\cdots 49}{10\cdots 58}a^{10}-\frac{13\cdots 83}{15\cdots 32}a^{9}+\frac{85\cdots 81}{10\cdots 58}a^{8}+\frac{38\cdots 57}{20\cdots 16}a^{7}-\frac{30\cdots 61}{10\cdots 58}a^{6}-\frac{58\cdots 65}{15\cdots 32}a^{5}+\frac{31\cdots 21}{10\cdots 58}a^{4}+\frac{32\cdots 35}{10\cdots 58}a^{3}-\frac{11\cdots 65}{10\cdots 58}a^{2}-\frac{18\cdots 19}{20\cdots 16}a+\frac{90\cdots 37}{10\cdots 58}$, $\frac{41\cdots 79}{51\cdots 29}a^{15}-\frac{35\cdots 19}{12\cdots 48}a^{14}-\frac{35\cdots 41}{20\cdots 16}a^{13}+\frac{59\cdots 21}{20\cdots 16}a^{12}+\frac{16\cdots 99}{12\cdots 48}a^{11}-\frac{53\cdots 71}{51\cdots 29}a^{10}-\frac{31\cdots 19}{79\cdots 66}a^{9}+\frac{11\cdots 89}{20\cdots 16}a^{8}+\frac{13\cdots 25}{20\cdots 16}a^{7}-\frac{82\cdots 02}{51\cdots 29}a^{6}-\frac{90\cdots 29}{79\cdots 66}a^{5}+\frac{15\cdots 51}{20\cdots 16}a^{4}+\frac{16\cdots 83}{20\cdots 16}a^{3}+\frac{80\cdots 01}{20\cdots 16}a^{2}+\frac{55\cdots 93}{20\cdots 16}a-\frac{47\cdots 69}{10\cdots 58}$, $\frac{24\cdots 89}{20\cdots 16}a^{15}-\frac{48\cdots 95}{12\cdots 48}a^{14}-\frac{57\cdots 43}{20\cdots 16}a^{13}+\frac{83\cdots 57}{20\cdots 16}a^{12}+\frac{71\cdots 21}{30\cdots 37}a^{11}-\frac{71\cdots 78}{51\cdots 29}a^{10}-\frac{13\cdots 59}{15\cdots 32}a^{9}+\frac{15\cdots 51}{20\cdots 16}a^{8}+\frac{94\cdots 62}{51\cdots 29}a^{7}-\frac{14\cdots 40}{51\cdots 29}a^{6}-\frac{57\cdots 25}{15\cdots 32}a^{5}+\frac{59\cdots 65}{20\cdots 16}a^{4}+\frac{65\cdots 21}{20\cdots 16}a^{3}-\frac{21\cdots 99}{20\cdots 16}a^{2}-\frac{92\cdots 87}{10\cdots 58}a+\frac{46\cdots 42}{51\cdots 29}$, $\frac{155816065675877}{932388892343396}a^{15}-\frac{597188084445183}{932388892343396}a^{14}-\frac{16\cdots 41}{466194446171698}a^{13}+\frac{67\cdots 57}{932388892343396}a^{12}+\frac{27\cdots 23}{932388892343396}a^{11}-\frac{74\cdots 14}{233097223085849}a^{10}-\frac{95\cdots 21}{932388892343396}a^{9}+\frac{13\cdots 35}{932388892343396}a^{8}+\frac{17\cdots 65}{932388892343396}a^{7}-\frac{10\cdots 66}{233097223085849}a^{6}-\frac{29\cdots 95}{932388892343396}a^{5}+\frac{45\cdots 61}{932388892343396}a^{4}+\frac{67\cdots 66}{233097223085849}a^{3}-\frac{16\cdots 23}{932388892343396}a^{2}-\frac{80\cdots 75}{932388892343396}a+\frac{21\cdots 07}{233097223085849}$, $a+1$, $\frac{11\cdots 74}{51\cdots 29}a^{15}-\frac{93\cdots 29}{12\cdots 48}a^{14}-\frac{11\cdots 91}{20\cdots 16}a^{13}+\frac{16\cdots 69}{20\cdots 16}a^{12}+\frac{54\cdots 09}{12\cdots 48}a^{11}-\frac{28\cdots 63}{10\cdots 58}a^{10}-\frac{63\cdots 71}{39\cdots 33}a^{9}+\frac{30\cdots 39}{20\cdots 16}a^{8}+\frac{71\cdots 83}{20\cdots 16}a^{7}-\frac{55\cdots 21}{10\cdots 58}a^{6}-\frac{26\cdots 82}{39\cdots 33}a^{5}+\frac{11\cdots 33}{20\cdots 16}a^{4}+\frac{12\cdots 77}{20\cdots 16}a^{3}-\frac{40\cdots 19}{20\cdots 16}a^{2}-\frac{33\cdots 15}{20\cdots 16}a+\frac{86\cdots 96}{51\cdots 29}$, $\frac{10\cdots 27}{20\cdots 16}a^{15}-\frac{97\cdots 35}{60\cdots 74}a^{14}-\frac{25\cdots 65}{20\cdots 16}a^{13}+\frac{78\cdots 28}{51\cdots 29}a^{12}+\frac{64\cdots 39}{60\cdots 74}a^{11}-\frac{46\cdots 99}{10\cdots 58}a^{10}-\frac{61\cdots 29}{15\cdots 32}a^{9}+\frac{29\cdots 59}{10\cdots 58}a^{8}+\frac{92\cdots 53}{10\cdots 58}a^{7}-\frac{11\cdots 83}{10\cdots 58}a^{6}-\frac{29\cdots 95}{15\cdots 32}a^{5}+\frac{12\cdots 03}{10\cdots 58}a^{4}+\frac{32\cdots 73}{20\cdots 16}a^{3}-\frac{23\cdots 68}{51\cdots 29}a^{2}-\frac{45\cdots 85}{10\cdots 58}a+\frac{56\cdots 35}{10\cdots 58}$, $\frac{27\cdots 27}{10\cdots 58}a^{15}-\frac{54\cdots 69}{60\cdots 74}a^{14}-\frac{31\cdots 67}{51\cdots 29}a^{13}+\frac{46\cdots 75}{51\cdots 29}a^{12}+\frac{31\cdots 91}{60\cdots 74}a^{11}-\frac{16\cdots 36}{51\cdots 29}a^{10}-\frac{73\cdots 86}{39\cdots 33}a^{9}+\frac{17\cdots 57}{10\cdots 58}a^{8}+\frac{41\cdots 51}{10\cdots 58}a^{7}-\frac{31\cdots 43}{51\cdots 29}a^{6}-\frac{31\cdots 95}{39\cdots 33}a^{5}+\frac{65\cdots 57}{10\cdots 58}a^{4}+\frac{35\cdots 07}{51\cdots 29}a^{3}-\frac{23\cdots 11}{10\cdots 58}a^{2}-\frac{99\cdots 78}{51\cdots 29}a+\frac{20\cdots 07}{10\cdots 58}$, $\frac{11\cdots 11}{20\cdots 16}a^{15}-\frac{21\cdots 75}{12\cdots 48}a^{14}-\frac{13\cdots 57}{10\cdots 58}a^{13}+\frac{36\cdots 41}{20\cdots 16}a^{12}+\frac{13\cdots 59}{12\cdots 48}a^{11}-\frac{62\cdots 03}{10\cdots 58}a^{10}-\frac{63\cdots 31}{15\cdots 32}a^{9}+\frac{69\cdots 45}{20\cdots 16}a^{8}+\frac{18\cdots 61}{20\cdots 16}a^{7}-\frac{13\cdots 07}{10\cdots 58}a^{6}-\frac{28\cdots 29}{15\cdots 32}a^{5}+\frac{29\cdots 91}{20\cdots 16}a^{4}+\frac{16\cdots 95}{10\cdots 58}a^{3}-\frac{11\cdots 45}{20\cdots 16}a^{2}-\frac{10\cdots 13}{20\cdots 16}a+\frac{54\cdots 31}{10\cdots 58}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 97496804.5048 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{2}\cdot 97496804.5048 \cdot 1}{2\cdot\sqrt{371353068328608385984364544}}\cr\approx \mathstrut & 0.409059574678 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 28*x^14 + 2*x^13 + 244*x^12 + 152*x^11 - 862*x^10 - 314*x^9 + 2403*x^8 - 240*x^7 - 6194*x^6 - 1726*x^5 + 5894*x^4 + 2718*x^3 - 1890*x^2 - 920*x + 103) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 2*x^15 - 28*x^14 + 2*x^13 + 244*x^12 + 152*x^11 - 862*x^10 - 314*x^9 + 2403*x^8 - 240*x^7 - 6194*x^6 - 1726*x^5 + 5894*x^4 + 2718*x^3 - 1890*x^2 - 920*x + 103, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 - 28*x^14 + 2*x^13 + 244*x^12 + 152*x^11 - 862*x^10 - 314*x^9 + 2403*x^8 - 240*x^7 - 6194*x^6 - 1726*x^5 + 5894*x^4 + 2718*x^3 - 1890*x^2 - 920*x + 103); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 2*x^15 - 28*x^14 + 2*x^13 + 244*x^12 + 152*x^11 - 862*x^10 - 314*x^9 + 2403*x^8 - 240*x^7 - 6194*x^6 - 1726*x^5 + 5894*x^4 + 2718*x^3 - 1890*x^2 - 920*x + 103); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^7:F_8:C_3$ (as 16T1800):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 21504
The 36 conjugacy class representatives for $C_2^7:F_8:C_3$
Character table for $C_2^7:F_8:C_3$

Intermediate fields

8.8.6423507767296.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.14.0.1}{14} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.4.0.1}{4} }$ ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ ${\href{/padicField/59.14.0.1}{14} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.8.24a1.1$x^{16} + 8 x^{15} + 36 x^{14} + 112 x^{13} + 266 x^{12} + 504 x^{11} + 786 x^{10} + 1026 x^{9} + 1137 x^{8} + 1076 x^{7} + 874 x^{6} + 606 x^{5} + 356 x^{4} + 172 x^{3} + 66 x^{2} + 18 x + 5$$8$$2$$24$16T712$$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}]_{7}^{6}$$
\(3\) Copy content Toggle raw display 3.2.2.2a1.1$x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$$2$$2$$2$$C_4$$$[\ ]_{2}^{2}$$
3.12.1.0a1.1$x^{12} + x^{6} + x^{5} + x^{4} + x^{2} + 2$$1$$12$$0$$C_{12}$$$[\ ]^{12}$$
\(199\) Copy content Toggle raw display 199.2.1.0a1.1$x^{2} + 193 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
199.2.1.0a1.1$x^{2} + 193 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
199.2.3.4a1.2$x^{6} + 579 x^{5} + 111756 x^{4} + 7192531 x^{3} + 335268 x^{2} + 5211 x + 226$$3$$2$$4$$C_6$$$[\ ]_{3}^{2}$$
199.2.3.4a1.2$x^{6} + 579 x^{5} + 111756 x^{4} + 7192531 x^{3} + 335268 x^{2} + 5211 x + 226$$3$$2$$4$$C_6$$$[\ ]_{3}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)