Show commands: Magma
Group invariants
Abstract group: | $C_2^7:F_8:C_3$ |
| |
Order: | $21504=2^{10} \cdot 3 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $1800$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,15,5,10,8,13)(2,16,6,9,7,14)(3,12)(4,11)$, $(1,16,12,2,15,11)(5,7,10)(6,8,9)(13,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $21$: $C_7:C_3$ $168$: $C_2^3:(C_7: C_3)$ x 3 $1344$: 24T2951 $10752$: 56T? Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 8: $C_2^3:(C_7: C_3)$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $14$ | $2$ | $4$ | $( 3, 4)( 5, 6)(11,12)(13,14)$ |
2C | $2^{2},1^{12}$ | $28$ | $2$ | $2$ | $(11,12)(15,16)$ |
2D | $2^{6},1^{4}$ | $28$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 7, 8)(11,12)(13,14)(15,16)$ |
2E | $2^{4},1^{8}$ | $56$ | $2$ | $4$ | $( 7, 8)(11,12)(13,14)(15,16)$ |
2F | $2^{8}$ | $56$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3,13)( 4,14)( 5,12)( 6,11)( 9,16)(10,15)$ |
2G | $2^{8}$ | $56$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,12)( 8,11)( 9,14)(10,13)$ |
3A1 | $3^{4},1^{4}$ | $448$ | $3$ | $8$ | $( 3,13,15)( 4,14,16)( 5, 7,12)( 6, 8,11)$ |
3A-1 | $3^{4},1^{4}$ | $448$ | $3$ | $8$ | $( 3,15,13)( 4,16,14)( 5,12, 7)( 6,11, 8)$ |
4A | $4^{4}$ | $56$ | $4$ | $12$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,14, 6,13)( 7,16, 8,15)$ |
4B | $4^{4}$ | $56$ | $4$ | $12$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5, 8, 6, 7)(13,15,14,16)$ |
4C | $4^{2},2^{4}$ | $336$ | $4$ | $10$ | $( 1, 4, 2, 3)( 5,16)( 6,15)( 7,14, 8,13)( 9,12)(10,11)$ |
4D | $4^{2},2^{4}$ | $336$ | $4$ | $10$ | $( 1,14)( 2,13)( 3, 7, 4, 8)( 5,10)( 6, 9)(11,16,12,15)$ |
6A1 | $6^{2},2^{2}$ | $448$ | $6$ | $12$ | $( 1, 2)( 3,16,13, 4,15,14)( 5,11, 7, 6,12, 8)( 9,10)$ |
6A-1 | $6^{2},2^{2}$ | $448$ | $6$ | $12$ | $( 1, 2)( 3,14,15, 4,13,16)( 5, 8,12, 6, 7,11)( 9,10)$ |
6B1 | $3^{4},2^{2}$ | $448$ | $6$ | $10$ | $( 1, 9, 4)( 2,10, 3)( 5, 7,14)( 6, 8,13)(11,12)(15,16)$ |
6B-1 | $3^{4},2^{2}$ | $448$ | $6$ | $10$ | $( 1, 4, 9)( 2, 3,10)( 5,14, 7)( 6,13, 8)(11,12)(15,16)$ |
6C1 | $6^{2},1^{4}$ | $448$ | $6$ | $10$ | $( 1, 4,11, 2, 3,12)( 7,15,14, 8,16,13)$ |
6C-1 | $6^{2},1^{4}$ | $448$ | $6$ | $10$ | $( 1,12, 3, 2,11, 4)( 7,13,16, 8,14,15)$ |
6D1 | $6,3^{2},2,1^{2}$ | $896$ | $6$ | $10$ | $( 1, 9, 7)( 2,10, 8)( 3,12,14, 4,11,13)( 5, 6)$ |
6D-1 | $6,3^{2},2,1^{2}$ | $896$ | $6$ | $10$ | $( 1, 7, 9)( 2, 8,10)( 3,13,11, 4,14,12)( 5, 6)$ |
6E1 | $6,3^{2},2,1^{2}$ | $896$ | $6$ | $10$ | $( 3, 5,10)( 4, 6, 9)( 7, 8)(11,16,13,12,15,14)$ |
6E-1 | $6,3^{2},2,1^{2}$ | $896$ | $6$ | $10$ | $( 3,10, 5)( 4, 9, 6)( 7, 8)(11,14,15,12,13,16)$ |
6F1 | $6^{2},2^{2}$ | $896$ | $6$ | $12$ | $( 1, 4,15, 7,14,10)( 2, 3,16, 8,13, 9)( 5,12)( 6,11)$ |
6F-1 | $6^{2},2^{2}$ | $896$ | $6$ | $12$ | $( 1,10,14, 7,15, 4)( 2, 9,13, 8,16, 3)( 5,12)( 6,11)$ |
6G1 | $6^{2},2^{2}$ | $896$ | $6$ | $12$ | $( 1,11, 3, 5, 8,16)( 2,12, 4, 6, 7,15)( 9,14)(10,13)$ |
6G-1 | $6^{2},2^{2}$ | $896$ | $6$ | $12$ | $( 1,16, 8, 5, 3,11)( 2,15, 7, 6, 4,12)( 9,14)(10,13)$ |
7A1 | $7^{2},1^{2}$ | $1536$ | $7$ | $12$ | $( 1,10, 4,15, 5,11,13)( 2, 9, 3,16, 6,12,14)$ |
7A-1 | $7^{2},1^{2}$ | $1536$ | $7$ | $12$ | $( 1,13,11, 5,15, 4,10)( 2,14,12, 6,16, 3, 9)$ |
12A1 | $12,4$ | $896$ | $12$ | $14$ | $( 1,10, 2, 9)( 3, 6,16,12,13, 8, 4, 5,15,11,14, 7)$ |
12A-1 | $12,4$ | $896$ | $12$ | $14$ | $( 1, 9, 2,10)( 3, 7,14,11,15, 5, 4, 8,13,12,16, 6)$ |
12B1 | $12,4$ | $896$ | $12$ | $14$ | $( 1,11, 2,12)( 3, 7,16, 9, 5,13, 4, 8,15,10, 6,14)$ |
12B-1 | $12,4$ | $896$ | $12$ | $14$ | $( 1,12, 2,11)( 3,14, 6,10,15, 8, 4,13, 5, 9,16, 7)$ |
14A1 | $14,2$ | $1536$ | $14$ | $14$ | $( 1, 6,10,12, 4,14,15, 2, 5, 9,11, 3,13,16)( 7, 8)$ |
14A-1 | $14,2$ | $1536$ | $14$ | $14$ | $( 1,16,13, 3,11, 9, 5, 2,15,14, 4,12,10, 6)( 7, 8)$ |
Malle's constant $a(G)$: $1/2$
Character table
36 x 36 character table
Regular extensions
Data not computed