Properties

Label 16.12.127...000.1
Degree $16$
Signature $[12, 2]$
Discriminant $1.272\times 10^{27}$
Root discriminant \(49.44\)
Ramified primes $2,5,97,379$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^7.A_4\wr C_2$ (as 16T1824)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 42*x^14 - 16*x^13 + 582*x^12 + 484*x^11 - 2960*x^10 - 4472*x^9 + 2964*x^8 + 17264*x^7 + 13234*x^6 - 30948*x^5 - 21070*x^4 + 27348*x^3 - 3520*x^2 - 16828*x - 121)
 
Copy content gp:K = bnfinit(y^16 - 42*y^14 - 16*y^13 + 582*y^12 + 484*y^11 - 2960*y^10 - 4472*y^9 + 2964*y^8 + 17264*y^7 + 13234*y^6 - 30948*y^5 - 21070*y^4 + 27348*y^3 - 3520*y^2 - 16828*y - 121, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 42*x^14 - 16*x^13 + 582*x^12 + 484*x^11 - 2960*x^10 - 4472*x^9 + 2964*x^8 + 17264*x^7 + 13234*x^6 - 30948*x^5 - 21070*x^4 + 27348*x^3 - 3520*x^2 - 16828*x - 121);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 42*x^14 - 16*x^13 + 582*x^12 + 484*x^11 - 2960*x^10 - 4472*x^9 + 2964*x^8 + 17264*x^7 + 13234*x^6 - 30948*x^5 - 21070*x^4 + 27348*x^3 - 3520*x^2 - 16828*x - 121)
 

\( x^{16} - 42 x^{14} - 16 x^{13} + 582 x^{12} + 484 x^{11} - 2960 x^{10} - 4472 x^{9} + 2964 x^{8} + \cdots - 121 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[12, 2]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(1272272789919032934400000000\) \(\medspace = 2^{24}\cdot 5^{8}\cdot 97^{2}\cdot 379^{4}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(49.44\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(5\), \(97\), \(379\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{5}$, $\frac{1}{10}a^{14}+\frac{1}{5}a^{13}+\frac{1}{10}a^{12}-\frac{1}{10}a^{11}-\frac{1}{10}a^{10}-\frac{1}{5}a^{9}+\frac{1}{5}a^{8}+\frac{2}{5}a^{7}-\frac{1}{2}a^{6}-\frac{1}{10}a^{4}-\frac{1}{2}a^{3}+\frac{1}{10}a^{2}+\frac{2}{5}$, $\frac{1}{13\cdots 50}a^{15}+\frac{18\cdots 93}{68\cdots 25}a^{14}-\frac{12\cdots 01}{13\cdots 50}a^{13}+\frac{96\cdots 19}{68\cdots 25}a^{12}-\frac{29\cdots 23}{13\cdots 05}a^{11}+\frac{63\cdots 09}{13\cdots 50}a^{10}+\frac{51\cdots 97}{68\cdots 25}a^{9}-\frac{47\cdots 53}{13\cdots 50}a^{8}+\frac{62\cdots 71}{13\cdots 50}a^{7}-\frac{10\cdots 95}{27\cdots 61}a^{6}+\frac{23\cdots 59}{13\cdots 50}a^{5}-\frac{21\cdots 37}{68\cdots 25}a^{4}-\frac{28\cdots 77}{68\cdots 25}a^{3}+\frac{51\cdots 79}{13\cdots 50}a^{2}+\frac{63\cdots 22}{68\cdots 25}a+\frac{46\cdots 81}{13\cdots 50}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $13$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{23\cdots 78}{25\cdots 45}a^{15}-\frac{22\cdots 62}{25\cdots 45}a^{14}-\frac{68\cdots 23}{25\cdots 45}a^{13}+\frac{17\cdots 73}{51\cdots 90}a^{12}+\frac{90\cdots 97}{51\cdots 29}a^{11}-\frac{23\cdots 41}{51\cdots 90}a^{10}-\frac{65\cdots 78}{25\cdots 45}a^{9}+\frac{11\cdots 57}{51\cdots 90}a^{8}+\frac{24\cdots 08}{25\cdots 45}a^{7}-\frac{21\cdots 80}{51\cdots 29}a^{6}-\frac{27\cdots 88}{25\cdots 45}a^{5}+\frac{92\cdots 21}{51\cdots 90}a^{4}+\frac{82\cdots 83}{25\cdots 45}a^{3}-\frac{30\cdots 91}{51\cdots 90}a^{2}-\frac{50\cdots 93}{25\cdots 45}a+\frac{82\cdots 31}{51\cdots 90}$, $\frac{48\cdots 83}{68\cdots 25}a^{15}+\frac{25\cdots 11}{13\cdots 50}a^{14}-\frac{40\cdots 71}{13\cdots 50}a^{13}-\frac{22\cdots 57}{13\cdots 50}a^{12}+\frac{53\cdots 16}{13\cdots 05}a^{11}+\frac{23\cdots 92}{68\cdots 25}a^{10}-\frac{24\cdots 41}{13\cdots 50}a^{9}-\frac{33\cdots 53}{13\cdots 50}a^{8}+\frac{80\cdots 38}{68\cdots 25}a^{7}+\frac{44\cdots 27}{54\cdots 22}a^{6}+\frac{69\cdots 69}{13\cdots 50}a^{5}-\frac{25\cdots 69}{13\cdots 50}a^{4}+\frac{39\cdots 93}{68\cdots 25}a^{3}+\frac{10\cdots 12}{68\cdots 25}a^{2}-\frac{20\cdots 21}{13\cdots 50}a+\frac{36\cdots 61}{13\cdots 50}$, $\frac{56\cdots 24}{68\cdots 25}a^{15}+\frac{19\cdots 63}{13\cdots 50}a^{14}-\frac{49\cdots 03}{13\cdots 50}a^{13}-\frac{46\cdots 83}{68\cdots 25}a^{12}+\frac{13\cdots 64}{27\cdots 61}a^{11}+\frac{13\cdots 97}{13\cdots 50}a^{10}-\frac{31\cdots 83}{13\cdots 50}a^{9}-\frac{78\cdots 99}{13\cdots 50}a^{8}-\frac{26\cdots 51}{68\cdots 25}a^{7}+\frac{75\cdots 05}{54\cdots 22}a^{6}+\frac{29\cdots 07}{13\cdots 50}a^{5}-\frac{16\cdots 56}{68\cdots 25}a^{4}-\frac{22\cdots 21}{68\cdots 25}a^{3}+\frac{41\cdots 77}{13\cdots 50}a^{2}+\frac{26\cdots 87}{13\cdots 50}a-\frac{22\cdots 47}{13\cdots 50}$, $\frac{99\cdots 23}{68\cdots 25}a^{15}+\frac{46\cdots 41}{13\cdots 50}a^{14}-\frac{84\cdots 01}{13\cdots 50}a^{13}-\frac{26\cdots 71}{68\cdots 25}a^{12}+\frac{11\cdots 81}{13\cdots 05}a^{11}+\frac{12\cdots 79}{13\cdots 50}a^{10}-\frac{58\cdots 21}{13\cdots 50}a^{9}-\frac{11\cdots 43}{13\cdots 50}a^{8}+\frac{24\cdots 28}{68\cdots 25}a^{7}+\frac{15\cdots 65}{54\cdots 22}a^{6}+\frac{33\cdots 89}{13\cdots 50}a^{5}-\frac{30\cdots 82}{68\cdots 25}a^{4}-\frac{31\cdots 92}{68\cdots 25}a^{3}+\frac{52\cdots 69}{13\cdots 50}a^{2}+\frac{13\cdots 49}{13\cdots 50}a-\frac{47\cdots 59}{13\cdots 50}$, $\frac{23\cdots 99}{68\cdots 25}a^{15}-\frac{12\cdots 51}{68\cdots 25}a^{14}-\frac{19\cdots 33}{13\cdots 50}a^{13}+\frac{25\cdots 69}{13\cdots 50}a^{12}+\frac{26\cdots 79}{13\cdots 05}a^{11}+\frac{44\cdots 56}{68\cdots 25}a^{10}-\frac{13\cdots 03}{13\cdots 50}a^{9}-\frac{68\cdots 77}{68\cdots 25}a^{8}+\frac{86\cdots 94}{68\cdots 25}a^{7}+\frac{13\cdots 64}{27\cdots 61}a^{6}+\frac{29\cdots 57}{13\cdots 50}a^{5}-\frac{14\cdots 47}{13\cdots 50}a^{4}-\frac{89\cdots 96}{68\cdots 25}a^{3}+\frac{48\cdots 56}{68\cdots 25}a^{2}-\frac{50\cdots 13}{13\cdots 50}a-\frac{16\cdots 91}{68\cdots 25}$, $\frac{19\cdots 67}{68\cdots 25}a^{15}-\frac{23\cdots 88}{68\cdots 25}a^{14}-\frac{81\cdots 92}{68\cdots 25}a^{13}-\frac{37\cdots 83}{13\cdots 50}a^{12}+\frac{22\cdots 83}{13\cdots 05}a^{11}+\frac{72\cdots 28}{68\cdots 25}a^{10}-\frac{57\cdots 52}{68\cdots 25}a^{9}-\frac{70\cdots 76}{68\cdots 25}a^{8}+\frac{66\cdots 07}{68\cdots 25}a^{7}+\frac{11\cdots 55}{27\cdots 61}a^{6}+\frac{18\cdots 78}{68\cdots 25}a^{5}-\frac{12\cdots 41}{13\cdots 50}a^{4}-\frac{16\cdots 93}{68\cdots 25}a^{3}+\frac{58\cdots 43}{68\cdots 25}a^{2}-\frac{32\cdots 52}{68\cdots 25}a-\frac{90\cdots 73}{68\cdots 25}$, $\frac{14\cdots 06}{68\cdots 25}a^{15}+\frac{35\cdots 26}{68\cdots 25}a^{14}-\frac{62\cdots 86}{68\cdots 25}a^{13}-\frac{75\cdots 99}{13\cdots 50}a^{12}+\frac{17\cdots 97}{13\cdots 05}a^{11}+\frac{17\cdots 63}{13\cdots 50}a^{10}-\frac{41\cdots 81}{68\cdots 25}a^{9}-\frac{71\cdots 48}{68\cdots 25}a^{8}+\frac{32\cdots 66}{68\cdots 25}a^{7}+\frac{10\cdots 96}{27\cdots 61}a^{6}+\frac{20\cdots 79}{68\cdots 25}a^{5}-\frac{86\cdots 33}{13\cdots 50}a^{4}-\frac{27\cdots 99}{68\cdots 25}a^{3}+\frac{74\cdots 93}{13\cdots 50}a^{2}-\frac{35\cdots 86}{68\cdots 25}a-\frac{22\cdots 99}{68\cdots 25}$, $\frac{25\cdots 49}{68\cdots 25}a^{15}-\frac{53\cdots 61}{68\cdots 25}a^{14}-\frac{10\cdots 49}{68\cdots 25}a^{13}-\frac{40\cdots 51}{13\cdots 50}a^{12}+\frac{59\cdots 87}{27\cdots 10}a^{11}+\frac{20\cdots 57}{13\cdots 50}a^{10}-\frac{79\cdots 19}{68\cdots 25}a^{9}-\frac{10\cdots 22}{68\cdots 25}a^{8}+\frac{95\cdots 54}{68\cdots 25}a^{7}+\frac{18\cdots 51}{27\cdots 61}a^{6}+\frac{32\cdots 91}{68\cdots 25}a^{5}-\frac{16\cdots 27}{13\cdots 50}a^{4}-\frac{11\cdots 17}{13\cdots 50}a^{3}+\frac{13\cdots 17}{13\cdots 50}a^{2}-\frac{97\cdots 94}{68\cdots 25}a-\frac{48\cdots 06}{68\cdots 25}$, $\frac{51\cdots 41}{13\cdots 50}a^{15}-\frac{32\cdots 87}{68\cdots 25}a^{14}-\frac{10\cdots 08}{68\cdots 25}a^{13}+\frac{94\cdots 29}{68\cdots 25}a^{12}+\frac{28\cdots 32}{13\cdots 05}a^{11}-\frac{65\cdots 78}{68\cdots 25}a^{10}-\frac{75\cdots 73}{68\cdots 25}a^{9}-\frac{10\cdots 24}{68\cdots 25}a^{8}+\frac{29\cdots 11}{13\cdots 50}a^{7}+\frac{10\cdots 55}{27\cdots 61}a^{6}-\frac{16\cdots 28}{68\cdots 25}a^{5}-\frac{86\cdots 92}{68\cdots 25}a^{4}+\frac{70\cdots 93}{68\cdots 25}a^{3}+\frac{78\cdots 07}{68\cdots 25}a^{2}-\frac{96\cdots 98}{68\cdots 25}a+\frac{46\cdots 48}{68\cdots 25}$, $\frac{71\cdots 51}{13\cdots 50}a^{15}-\frac{17\cdots 17}{68\cdots 25}a^{14}-\frac{14\cdots 58}{68\cdots 25}a^{13}+\frac{41\cdots 93}{13\cdots 50}a^{12}+\frac{78\cdots 73}{27\cdots 10}a^{11}+\frac{10\cdots 29}{13\cdots 50}a^{10}-\frac{96\cdots 08}{68\cdots 25}a^{9}-\frac{16\cdots 93}{13\cdots 50}a^{8}+\frac{25\cdots 41}{13\cdots 50}a^{7}+\frac{16\cdots 96}{27\cdots 61}a^{6}+\frac{79\cdots 67}{68\cdots 25}a^{5}-\frac{21\cdots 29}{13\cdots 50}a^{4}+\frac{41\cdots 71}{13\cdots 50}a^{3}+\frac{19\cdots 59}{13\cdots 50}a^{2}-\frac{63\cdots 53}{68\cdots 25}a-\frac{19\cdots 49}{13\cdots 50}$, $\frac{56\cdots 19}{68\cdots 25}a^{15}+\frac{41\cdots 99}{68\cdots 25}a^{14}-\frac{43\cdots 03}{13\cdots 50}a^{13}-\frac{51\cdots 01}{13\cdots 50}a^{12}+\frac{49\cdots 38}{13\cdots 05}a^{11}+\frac{89\cdots 37}{13\cdots 50}a^{10}-\frac{11\cdots 63}{13\cdots 50}a^{9}-\frac{23\cdots 77}{68\cdots 25}a^{8}-\frac{28\cdots 66}{68\cdots 25}a^{7}+\frac{97\cdots 90}{27\cdots 61}a^{6}+\frac{15\cdots 17}{13\cdots 50}a^{5}+\frac{73\cdots 83}{13\cdots 50}a^{4}+\frac{37\cdots 24}{68\cdots 25}a^{3}+\frac{37\cdots 07}{13\cdots 50}a^{2}-\frac{33\cdots 53}{13\cdots 50}a+\frac{13\cdots 74}{68\cdots 25}$, $\frac{13\cdots 23}{68\cdots 25}a^{15}-\frac{26\cdots 57}{68\cdots 25}a^{14}-\frac{56\cdots 93}{68\cdots 25}a^{13}-\frac{10\cdots 61}{68\cdots 25}a^{12}+\frac{31\cdots 33}{27\cdots 10}a^{11}+\frac{52\cdots 67}{68\cdots 25}a^{10}-\frac{42\cdots 43}{68\cdots 25}a^{9}-\frac{56\cdots 14}{68\cdots 25}a^{8}+\frac{54\cdots 43}{68\cdots 25}a^{7}+\frac{97\cdots 88}{27\cdots 61}a^{6}+\frac{15\cdots 07}{68\cdots 25}a^{5}-\frac{46\cdots 42}{68\cdots 25}a^{4}-\frac{57\cdots 59}{13\cdots 50}a^{3}+\frac{39\cdots 57}{68\cdots 25}a^{2}-\frac{64\cdots 63}{68\cdots 25}a-\frac{23\cdots 02}{68\cdots 25}$, $\frac{82\cdots 23}{68\cdots 25}a^{15}+\frac{20\cdots 13}{68\cdots 25}a^{14}-\frac{75\cdots 31}{13\cdots 50}a^{13}-\frac{96\cdots 16}{68\cdots 25}a^{12}+\frac{22\cdots 88}{27\cdots 61}a^{11}+\frac{15\cdots 72}{68\cdots 25}a^{10}-\frac{28\cdots 33}{68\cdots 25}a^{9}-\frac{95\cdots 99}{68\cdots 25}a^{8}-\frac{17\cdots 77}{68\cdots 25}a^{7}+\frac{98\cdots 25}{27\cdots 61}a^{6}+\frac{89\cdots 89}{13\cdots 50}a^{5}-\frac{24\cdots 12}{68\cdots 25}a^{4}-\frac{81\cdots 17}{68\cdots 25}a^{3}+\frac{11\cdots 52}{68\cdots 25}a^{2}+\frac{28\cdots 87}{68\cdots 25}a-\frac{17\cdots 47}{68\cdots 25}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 147673601.947 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{2}\cdot 147673601.947 \cdot 1}{2\cdot\sqrt{1272272789919032934400000000}}\cr\approx \mathstrut & 0.334736011855 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 42*x^14 - 16*x^13 + 582*x^12 + 484*x^11 - 2960*x^10 - 4472*x^9 + 2964*x^8 + 17264*x^7 + 13234*x^6 - 30948*x^5 - 21070*x^4 + 27348*x^3 - 3520*x^2 - 16828*x - 121) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 42*x^14 - 16*x^13 + 582*x^12 + 484*x^11 - 2960*x^10 - 4472*x^9 + 2964*x^8 + 17264*x^7 + 13234*x^6 - 30948*x^5 - 21070*x^4 + 27348*x^3 - 3520*x^2 - 16828*x - 121, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 42*x^14 - 16*x^13 + 582*x^12 + 484*x^11 - 2960*x^10 - 4472*x^9 + 2964*x^8 + 17264*x^7 + 13234*x^6 - 30948*x^5 - 21070*x^4 + 27348*x^3 - 3520*x^2 - 16828*x - 121); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 42*x^14 - 16*x^13 + 582*x^12 + 484*x^11 - 2960*x^10 - 4472*x^9 + 2964*x^8 + 17264*x^7 + 13234*x^6 - 30948*x^5 - 21070*x^4 + 27348*x^3 - 3520*x^2 - 16828*x - 121); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^7.A_4\wr C_2$ (as 16T1824):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36864
The 94 conjugacy class representatives for $C_2^7.A_4\wr C_2$
Character table for $C_2^7.A_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{5}) \), 8.8.22982560000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ R ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.8.24b3.5$x^{16} + 8 x^{15} + 38 x^{14} + 126 x^{13} + 322 x^{12} + 658 x^{11} + 1108 x^{10} + 1558 x^{9} + 1851 x^{8} + 1862 x^{7} + 1590 x^{6} + 1146 x^{5} + 694 x^{4} + 346 x^{3} + 138 x^{2} + 40 x + 9$$8$$2$$24$16T1286$$[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2, 2]_{3}^{6}$$
\(5\) Copy content Toggle raw display 5.2.2.2a1.2$x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
5.2.2.2a1.2$x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
5.4.2.4a1.2$x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$
\(97\) Copy content Toggle raw display 97.2.2.2a1.1$x^{4} + 192 x^{3} + 9226 x^{2} + 1057 x + 25$$2$$2$$2$$C_4$$$[\ ]_{2}^{2}$$
97.12.1.0a1.1$x^{12} + 30 x^{7} + 59 x^{6} + 81 x^{5} + 86 x^{3} + 78 x^{2} + 94 x + 5$$1$$12$$0$$C_{12}$$$[\ ]^{12}$$
\(379\) Copy content Toggle raw display $\Q_{379}$$x$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{379}$$x$$1$$1$$0$Trivial$$[\ ]$$
Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $3$$3$$1$$2$
Deg $3$$3$$1$$2$
Deg $6$$1$$6$$0$$C_6$$$[\ ]^{6}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)