Normalized defining polynomial
\( x^{16} + 1028 x^{14} + 255458 x^{12} + 23931840 x^{10} + 862829184 x^{8} + 12850493440 x^{6} + 71556958208 x^{4} + 147171966976 x^{2} + 69257396224 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96468058006688010602395260507818496203564253184=2^{44}\cdot 257^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $864.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4112=2^{4}\cdot 257\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4112}(1,·)$, $\chi_{4112}(1795,·)$, $\chi_{4112}(513,·)$, $\chi_{4112}(3851,·)$, $\chi_{4112}(2057,·)$, $\chi_{4112}(2763,·)$, $\chi_{4112}(273,·)$, $\chi_{4112}(1803,·)$, $\chi_{4112}(2329,·)$, $\chi_{4112}(2891,·)$, $\chi_{4112}(241,·)$, $\chi_{4112}(3859,·)$, $\chi_{4112}(707,·)$, $\chi_{4112}(2569,·)$, $\chi_{4112}(2297,·)$, $\chi_{4112}(835,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{7} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16448} a^{8} - \frac{1}{16} a^{6} + \frac{1}{32} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{65792} a^{9} + \frac{1}{64} a^{7} + \frac{1}{128} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{4473856} a^{10} - \frac{23}{1118464} a^{8} - \frac{287}{8704} a^{6} + \frac{9}{136} a^{4} + \frac{133}{272} a^{2} + \frac{2}{17}$, $\frac{1}{17895424} a^{11} - \frac{23}{4473856} a^{9} + \frac{801}{34816} a^{7} + \frac{9}{544} a^{5} - \frac{343}{1088} a^{3} + \frac{19}{68} a$, $\frac{1}{4853525315584} a^{12} - \frac{60899}{1213381328896} a^{10} - \frac{47042495}{2426762657792} a^{8} + \frac{3372913}{590166016} a^{6} + \frac{9283361}{295083008} a^{4} + \frac{1645255}{4610672} a^{2} + \frac{120883}{576334}$, $\frac{1}{9707050631168} a^{13} - \frac{60899}{2426762657792} a^{11} + \frac{104001}{18885312512} a^{9} + \frac{21815601}{1180332032} a^{7} + \frac{13894033}{590166016} a^{5} + \frac{3950591}{9221344} a^{3} - \frac{41821}{288167} a$, $\frac{1}{22345630552948736} a^{14} - \frac{5}{121443644309504} a^{12} - \frac{981442167}{11172815276474368} a^{10} + \frac{22964557313}{2793203819118592} a^{8} + \frac{60354586683}{1358562168832} a^{6} + \frac{64419170253}{339640542208} a^{4} - \frac{1574765255}{5306883472} a^{2} - \frac{257620721}{663360434}$, $\frac{1}{44691261105897472} a^{15} - \frac{5}{242887288619008} a^{13} + \frac{267236297}{22345630552948736} a^{11} - \frac{5755047359}{5586407638237184} a^{9} - \frac{46953718817}{2717124337664} a^{7} + \frac{75657276429}{679281084416} a^{5} + \frac{8732425499}{21227533888} a^{3} - \frac{137569934}{331680217} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{40}\times C_{687480}$, which has order $14079590400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 112709711.05474126 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 257 | Data not computed | ||||||