Normalized defining polynomial
\( x^{16} - 2 x^{15} + 12 x^{14} - 25 x^{13} + 173 x^{12} - 1719 x^{11} + 7483 x^{10} - 10055 x^{9} - 26783 x^{8} + 105894 x^{7} + 125405 x^{6} - 1722505 x^{5} + 5788287 x^{4} - 11178929 x^{3} + 13401259 x^{2} - 9271368 x + 2808063 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8322074981098944220712357040361=11^{14}\cdot 23^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{51} a^{11} - \frac{5}{51} a^{10} - \frac{5}{51} a^{9} - \frac{2}{17} a^{8} + \frac{8}{17} a^{7} + \frac{4}{17} a^{6} + \frac{6}{17} a^{5} - \frac{7}{17} a^{4} + \frac{11}{51} a^{3} + \frac{2}{51} a^{2} + \frac{14}{51} a - \frac{7}{17}$, $\frac{1}{8211} a^{12} - \frac{2}{2737} a^{11} + \frac{6}{161} a^{10} + \frac{968}{8211} a^{9} - \frac{173}{1173} a^{8} + \frac{2861}{8211} a^{7} + \frac{2692}{8211} a^{6} - \frac{178}{1173} a^{5} + \frac{583}{2737} a^{4} - \frac{232}{1173} a^{3} - \frac{3422}{8211} a^{2} - \frac{1332}{2737} a - \frac{10}{2737}$, $\frac{1}{8211} a^{13} - \frac{52}{8211} a^{11} - \frac{1060}{8211} a^{10} + \frac{733}{8211} a^{9} + \frac{88}{2737} a^{8} + \frac{394}{2737} a^{7} - \frac{881}{2737} a^{6} + \frac{94}{357} a^{5} + \frac{649}{2737} a^{4} - \frac{3023}{8211} a^{3} - \frac{77}{1173} a^{2} - \frac{1144}{8211} a - \frac{543}{2737}$, $\frac{1}{2652153} a^{14} - \frac{41}{884051} a^{13} + \frac{29}{884051} a^{12} + \frac{6599}{884051} a^{11} + \frac{7111}{52003} a^{10} + \frac{258304}{2652153} a^{9} - \frac{22859}{378879} a^{8} - \frac{483544}{2652153} a^{7} + \frac{303204}{884051} a^{6} + \frac{412907}{2652153} a^{5} - \frac{139946}{2652153} a^{4} + \frac{601184}{2652153} a^{3} + \frac{266017}{2652153} a^{2} + \frac{575077}{2652153} a + \frac{210138}{884051}$, $\frac{1}{6050780849691169944328828089} a^{15} + \frac{152443167638485961687}{6050780849691169944328828089} a^{14} + \frac{236796933005966346694}{13846180434075903762766197} a^{13} + \frac{98541144188113995223057}{6050780849691169944328828089} a^{12} + \frac{4344573868688678944097812}{2016926949897056648109609363} a^{11} + \frac{29180060161978690147699624}{288132421413865235444229909} a^{10} - \frac{27000109077569575436230694}{864397264241595706332689727} a^{9} + \frac{97538346595541130747952145}{6050780849691169944328828089} a^{8} + \frac{476465541024094852321096507}{2016926949897056648109609363} a^{7} - \frac{8049391654250680356775177}{35384683331527309615958059} a^{6} + \frac{286035774586197838807567145}{6050780849691169944328828089} a^{5} - \frac{71236201492711161278645936}{318462149983745786543622531} a^{4} - \frac{471552398703948913169184710}{6050780849691169944328828089} a^{3} - \frac{107567951837987635833165442}{6050780849691169944328828089} a^{2} - \frac{461197834674914515797411070}{2016926949897056648109609363} a + \frac{97774942227191380507920950}{672308983299018882703203121}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 297238964.584 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{253}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{-23})\), 4.2.704099.1 x2, 4.0.30613.1 x2, 8.0.495755401801.1, 8.2.2884800683080019.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $23$ | 23.8.6.1 | $x^{8} + 299 x^{4} + 25921$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 23.8.6.1 | $x^{8} + 299 x^{4} + 25921$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |