Normalized defining polynomial
\( x^{16} - 19x^{14} + 240x^{12} - 1741x^{10} + 9219x^{8} - 29161x^{6} + 63200x^{4} - 33759x^{2} + 14641 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(605165749776000000000000\)
\(\medspace = 2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 7^{8}\)
|
| |
Root discriminant: | \(30.65\) |
| |
Galois root discriminant: | $2\cdot 3^{1/2}5^{3/4}7^{1/2}\approx 30.645530678223075$ | ||
Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2^2\times C_4$ |
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(420=2^{2}\cdot 3\cdot 5\cdot 7\) | ||
Dirichlet character group: | $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(83,·)$, $\chi_{420}(71,·)$, $\chi_{420}(13,·)$, $\chi_{420}(211,·)$, $\chi_{420}(281,·)$, $\chi_{420}(29,·)$, $\chi_{420}(223,·)$, $\chi_{420}(97,·)$, $\chi_{420}(293,·)$, $\chi_{420}(167,·)$, $\chi_{420}(169,·)$, $\chi_{420}(239,·)$, $\chi_{420}(307,·)$, $\chi_{420}(377,·)$, $\chi_{420}(379,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{128}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11}a^{9}+\frac{1}{11}a^{7}+\frac{3}{11}a^{5}-\frac{2}{11}a^{3}+\frac{4}{11}a$, $\frac{1}{11}a^{10}+\frac{1}{11}a^{8}+\frac{3}{11}a^{6}-\frac{2}{11}a^{4}+\frac{4}{11}a^{2}$, $\frac{1}{11}a^{11}+\frac{2}{11}a^{7}-\frac{5}{11}a^{5}-\frac{5}{11}a^{3}-\frac{4}{11}a$, $\frac{1}{11}a^{12}+\frac{2}{11}a^{8}-\frac{5}{11}a^{6}-\frac{5}{11}a^{4}-\frac{4}{11}a^{2}$, $\frac{1}{11}a^{13}+\frac{4}{11}a^{7}+\frac{3}{11}a$, $\frac{1}{11137467154979}a^{14}-\frac{399578710000}{11137467154979}a^{12}+\frac{124755454976}{11137467154979}a^{10}+\frac{4072809174926}{11137467154979}a^{8}-\frac{3879007553519}{11137467154979}a^{6}+\frac{494941678642}{1012497014089}a^{4}+\frac{3589762146041}{11137467154979}a^{2}-\frac{10630726872}{92045183099}$, $\frac{1}{122512138704769}a^{15}+\frac{2637912332267}{122512138704769}a^{13}+\frac{124755454976}{122512138704769}a^{11}-\frac{989675895519}{122512138704769}a^{9}-\frac{7928995609875}{122512138704769}a^{7}-\frac{356657010010}{1012497014089}a^{5}+\frac{2577265131952}{122512138704769}a^{3}-\frac{470856642367}{1012497014089}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
| |
Relative class number: | $4$ (assuming GRH) |
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{1913329}{92045183099} a^{15} + \frac{346706790}{1012497014089} a^{13} - \frac{4150184540}{1012497014089} a^{11} + \frac{25395094000}{1012497014089} a^{9} - \frac{115409043000}{1012497014089} a^{7} + \frac{202993944499}{1012497014089} a^{5} - \frac{9911044220}{92045183099} a^{3} - \frac{1313812737840}{1012497014089} a \)
(order $12$)
|
| |
Fundamental units: |
$\frac{2211}{21019681}a^{14}-\frac{432308}{231216491}a^{12}+\frac{4795860}{231216491}a^{10}-\frac{29346000}{231216491}a^{8}+\frac{116003123}{231216491}a^{6}-\frac{234575241}{231216491}a^{4}+\frac{11452980}{21019681}a^{2}+\frac{8179387}{21019681}$, $\frac{1913329}{92045183099}a^{15}-\frac{346706790}{1012497014089}a^{13}+\frac{4150184540}{1012497014089}a^{11}-\frac{25395094000}{1012497014089}a^{9}+\frac{115409043000}{1012497014089}a^{7}-\frac{202993944499}{1012497014089}a^{5}+\frac{9911044220}{92045183099}a^{3}+\frac{1313812737840}{1012497014089}a-1$, $\frac{1977105}{25359581599}a^{15}+\frac{700972489}{11137467154979}a^{14}-\frac{33840010}{25359581599}a^{13}-\frac{12232808872}{11137467154979}a^{12}+\frac{426869315}{25359581599}a^{11}+\frac{123771447179}{11137467154979}a^{10}-\frac{2974352111}{25359581599}a^{9}-\frac{663232557440}{11137467154979}a^{8}+\frac{16495010200}{25359581599}a^{7}+\frac{1671303830347}{11137467154979}a^{6}-\frac{39480061}{19053029}a^{5}+\frac{31283527881}{1012497014089}a^{4}+\frac{127569956482}{25359581599}a^{3}-\frac{20300710112720}{11137467154979}a^{2}-\frac{392145995}{209583319}a+\frac{152144831913}{92045183099}$, $\frac{1750368606}{11137467154979}a^{14}-\frac{22240823625}{11137467154979}a^{12}+\frac{221921283282}{11137467154979}a^{10}-\frac{875110320306}{11137467154979}a^{8}+\frac{2844398064714}{11137467154979}a^{6}-\frac{58154153858}{1012497014089}a^{4}+\frac{4372605041031}{11137467154979}a^{2}-\frac{16751090454}{92045183099}$, $\frac{4816075}{92045183099}a^{15}-\frac{920857381}{1012497014089}a^{13}+\frac{10446504500}{1012497014089}a^{11}-\frac{63922450000}{1012497014089}a^{9}+\frac{260228515359}{1012497014089}a^{7}-\frac{510959725825}{1012497014089}a^{5}+\frac{24947268500}{92045183099}a^{3}-\frac{608145287463}{1012497014089}a$, $\frac{8554798408}{122512138704769}a^{15}-\frac{7237445019}{11137467154979}a^{14}+\frac{78480172205}{122512138704769}a^{13}+\frac{87580041851}{11137467154979}a^{12}-\frac{1678433057976}{122512138704769}a^{11}-\frac{831521155263}{11137467154979}a^{10}+\frac{23980867099986}{122512138704769}a^{9}+\frac{2754412221479}{11137467154979}a^{8}-\frac{125522026428687}{122512138704769}a^{7}-\frac{6474184370161}{11137467154979}a^{6}+\frac{3892363270514}{1012497014089}a^{5}-\frac{1465975132089}{1012497014089}a^{4}-\frac{578279762728196}{122512138704769}a^{3}+\frac{24180307477910}{11137467154979}a^{2}+\frac{1764287706595}{1012497014089}a-\frac{118312525499}{92045183099}$, $\frac{26282437176}{122512138704769}a^{15}-\frac{5848164616}{11137467154979}a^{14}-\frac{459017646465}{122512138704769}a^{13}+\frac{102997373081}{11137467154979}a^{12}+\frac{5052555576111}{122512138704769}a^{11}-\frac{1147114432008}{11137467154979}a^{10}-\frac{30069572166960}{122512138704769}a^{9}+\frac{7032881266611}{11137467154979}a^{8}+\frac{113533319175414}{122512138704769}a^{7}-\frac{27869094253426}{11137467154979}a^{6}-\frac{150778307485}{92045183099}a^{5}+\frac{5190068062805}{1012497014089}a^{4}+\frac{32131967669810}{122512138704769}a^{3}-\frac{25599188372831}{11137467154979}a^{2}-\frac{542992106839}{1012497014089}a+\frac{70794655219}{92045183099}$
|
| |
Regulator: | \( 76884.6053994 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 76884.6053994 \cdot 8}{12\cdot\sqrt{605165749776000000000000}}\cr\approx \mathstrut & 0.160047873165 \end{aligned}\] (assuming GRH)
Galois group
$C_2^2\times C_4$ (as 16T2):
An abelian group of order 16 |
The 16 conjugacy class representatives for $C_4\times C_2^2$ |
Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | R | ${\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.2.8a1.1 | $x^{8} + 2 x^{5} + 4 x^{4} + x^{2} + 4 x + 5$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $$[2]^{4}$$ |
2.4.2.8a1.1 | $x^{8} + 2 x^{5} + 4 x^{4} + x^{2} + 4 x + 5$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $$[2]^{4}$$ | |
\(3\)
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(5\)
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
\(7\)
| 7.2.2.2a1.1 | $x^{4} + 12 x^{3} + 42 x^{2} + 43 x + 9$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
7.2.2.2a1.1 | $x^{4} + 12 x^{3} + 42 x^{2} + 43 x + 9$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
7.2.2.2a1.1 | $x^{4} + 12 x^{3} + 42 x^{2} + 43 x + 9$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
7.2.2.2a1.1 | $x^{4} + 12 x^{3} + 42 x^{2} + 43 x + 9$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |