Properties

Label 16.0.582...401.1
Degree $16$
Signature $[0, 8]$
Discriminant $5.823\times 10^{24}$
Root discriminant \(35.30\)
Ramified primes $7,29$
Class number $5$ (GRH)
Class group [5] (GRH)
Galois group $C_4\wr C_2$ (as 16T42)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 10*x^14 + 42*x^13 + 122*x^12 - 708*x^11 + 749*x^10 + 2585*x^9 - 6198*x^8 + 2352*x^7 + 10883*x^6 - 13571*x^5 + 429*x^4 + 4438*x^3 + 1024*x^2 - 2584*x + 848)
 
Copy content gp:K = bnfinit(y^16 - 2*y^15 - 10*y^14 + 42*y^13 + 122*y^12 - 708*y^11 + 749*y^10 + 2585*y^9 - 6198*y^8 + 2352*y^7 + 10883*y^6 - 13571*y^5 + 429*y^4 + 4438*y^3 + 1024*y^2 - 2584*y + 848, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 - 10*x^14 + 42*x^13 + 122*x^12 - 708*x^11 + 749*x^10 + 2585*x^9 - 6198*x^8 + 2352*x^7 + 10883*x^6 - 13571*x^5 + 429*x^4 + 4438*x^3 + 1024*x^2 - 2584*x + 848);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 2*x^15 - 10*x^14 + 42*x^13 + 122*x^12 - 708*x^11 + 749*x^10 + 2585*x^9 - 6198*x^8 + 2352*x^7 + 10883*x^6 - 13571*x^5 + 429*x^4 + 4438*x^3 + 1024*x^2 - 2584*x + 848)
 

\( x^{16} - 2 x^{15} - 10 x^{14} + 42 x^{13} + 122 x^{12} - 708 x^{11} + 749 x^{10} + 2585 x^{9} + \cdots + 848 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(5823129643646193092027401\) \(\medspace = 7^{12}\cdot 29^{10}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(35.30\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $7^{3/4}29^{3/4}\approx 53.78015238265253$
Ramified primes:   \(7\), \(29\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2\times C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-7}, \sqrt{29})\)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{2}a^{9}+\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{80}a^{14}-\frac{9}{80}a^{13}-\frac{9}{80}a^{12}-\frac{17}{80}a^{11}-\frac{1}{80}a^{10}-\frac{7}{80}a^{9}-\frac{1}{4}a^{8}-\frac{1}{80}a^{7}+\frac{9}{80}a^{6}+\frac{31}{80}a^{5}-\frac{3}{20}a^{4}+\frac{31}{80}a^{3}+\frac{9}{20}a^{2}-\frac{1}{5}a+\frac{3}{10}$, $\frac{1}{50\cdots 60}a^{15}+\frac{46\cdots 91}{12\cdots 40}a^{14}+\frac{25\cdots 37}{25\cdots 80}a^{13}+\frac{30\cdots 13}{25\cdots 80}a^{12}+\frac{44\cdots 29}{25\cdots 80}a^{11}-\frac{60\cdots 45}{25\cdots 68}a^{10}+\frac{84\cdots 29}{50\cdots 60}a^{9}+\frac{74\cdots 19}{50\cdots 60}a^{8}-\frac{49\cdots 71}{12\cdots 40}a^{7}-\frac{40\cdots 33}{12\cdots 40}a^{6}+\frac{68\cdots 91}{50\cdots 60}a^{5}+\frac{45\cdots 51}{10\cdots 72}a^{4}-\frac{76\cdots 81}{50\cdots 60}a^{3}-\frac{56\cdots 57}{12\cdots 40}a^{2}-\frac{16\cdots 83}{63\cdots 20}a+\frac{29\cdots 83}{11\cdots 40}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{5}$, which has order $5$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{5}$, which has order $5$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{22\cdots 51}{50\cdots 60}a^{15}-\frac{36\cdots 09}{25\cdots 80}a^{14}-\frac{77\cdots 87}{12\cdots 40}a^{13}+\frac{34\cdots 61}{12\cdots 40}a^{12}+\frac{76\cdots 53}{12\cdots 40}a^{11}-\frac{11\cdots 59}{25\cdots 80}a^{10}+\frac{16\cdots 93}{50\cdots 60}a^{9}+\frac{11\cdots 89}{50\cdots 60}a^{8}-\frac{12\cdots 51}{25\cdots 80}a^{7}-\frac{76\cdots 57}{50\cdots 36}a^{6}+\frac{54\cdots 99}{50\cdots 60}a^{5}-\frac{57\cdots 31}{50\cdots 60}a^{4}-\frac{21\cdots 13}{50\cdots 60}a^{3}+\frac{15\cdots 53}{25\cdots 68}a^{2}+\frac{17\cdots 41}{63\cdots 20}a+\frac{79\cdots 11}{11\cdots 40}$, $\frac{19\cdots 89}{80\cdots 70}a^{15}-\frac{17\cdots 41}{64\cdots 60}a^{14}-\frac{17\cdots 31}{64\cdots 60}a^{13}+\frac{50\cdots 33}{64\cdots 60}a^{12}+\frac{23\cdots 89}{64\cdots 60}a^{11}-\frac{91\cdots 51}{64\cdots 60}a^{10}+\frac{35\cdots 11}{64\cdots 60}a^{9}+\frac{11\cdots 27}{16\cdots 40}a^{8}-\frac{58\cdots 59}{64\cdots 60}a^{7}-\frac{36\cdots 21}{12\cdots 32}a^{6}+\frac{15\cdots 13}{64\cdots 60}a^{5}-\frac{86\cdots 09}{80\cdots 70}a^{4}-\frac{69\cdots 91}{64\cdots 60}a^{3}+\frac{21\cdots 95}{32\cdots 08}a^{2}+\frac{50\cdots 57}{80\cdots 70}a-\frac{45\cdots 83}{15\cdots 90}$, $\frac{18\cdots 89}{14\cdots 16}a^{15}-\frac{47\cdots 37}{29\cdots 32}a^{14}-\frac{39\cdots 19}{29\cdots 32}a^{13}+\frac{12\cdots 53}{29\cdots 32}a^{12}+\frac{53\cdots 13}{29\cdots 32}a^{11}-\frac{21\cdots 03}{29\cdots 32}a^{10}+\frac{11\cdots 25}{29\cdots 32}a^{9}+\frac{50\cdots 49}{14\cdots 16}a^{8}-\frac{15\cdots 55}{29\cdots 32}a^{7}-\frac{29\cdots 17}{29\cdots 32}a^{6}+\frac{37\cdots 71}{29\cdots 32}a^{5}-\frac{99\cdots 89}{14\cdots 16}a^{4}-\frac{18\cdots 37}{29\cdots 32}a^{3}+\frac{11\cdots 71}{73\cdots 08}a^{2}+\frac{12\cdots 33}{36\cdots 54}a-\frac{95\cdots 69}{69\cdots 18}$, $\frac{98\cdots 59}{50\cdots 60}a^{15}-\frac{75\cdots 33}{25\cdots 80}a^{14}-\frac{26\cdots 79}{12\cdots 40}a^{13}+\frac{91\cdots 83}{12\cdots 40}a^{12}+\frac{34\cdots 49}{12\cdots 40}a^{11}-\frac{31\cdots 79}{25\cdots 80}a^{10}+\frac{85\cdots 53}{10\cdots 72}a^{9}+\frac{28\cdots 41}{50\cdots 60}a^{8}-\frac{24\cdots 27}{25\cdots 80}a^{7}-\frac{74\cdots 73}{25\cdots 80}a^{6}+\frac{11\cdots 07}{50\cdots 60}a^{5}-\frac{91\cdots 71}{50\cdots 60}a^{4}-\frac{42\cdots 81}{50\cdots 60}a^{3}+\frac{10\cdots 19}{12\cdots 40}a^{2}+\frac{14\cdots 07}{63\cdots 20}a-\frac{38\cdots 85}{23\cdots 28}$, $\frac{61\cdots 39}{50\cdots 60}a^{15}-\frac{10\cdots 41}{25\cdots 80}a^{14}-\frac{15\cdots 63}{12\cdots 40}a^{13}+\frac{94\cdots 69}{12\cdots 40}a^{12}+\frac{14\cdots 17}{12\cdots 40}a^{11}-\frac{30\cdots 51}{25\cdots 80}a^{10}+\frac{83\cdots 77}{50\cdots 60}a^{9}+\frac{20\cdots 01}{50\cdots 60}a^{8}-\frac{34\cdots 19}{25\cdots 80}a^{7}+\frac{23\cdots 91}{50\cdots 36}a^{6}+\frac{11\cdots 11}{50\cdots 60}a^{5}-\frac{18\cdots 19}{50\cdots 60}a^{4}-\frac{49\cdots 57}{50\cdots 60}a^{3}+\frac{55\cdots 09}{25\cdots 68}a^{2}-\frac{21\cdots 71}{63\cdots 20}a-\frac{52\cdots 01}{11\cdots 40}$, $\frac{41\cdots 61}{50\cdots 60}a^{15}-\frac{77\cdots 49}{12\cdots 40}a^{14}-\frac{23\cdots 43}{25\cdots 80}a^{13}+\frac{58\cdots 73}{25\cdots 80}a^{12}+\frac{33\cdots 29}{25\cdots 80}a^{11}-\frac{10\cdots 03}{25\cdots 68}a^{10}+\frac{11\cdots 49}{50\cdots 60}a^{9}+\frac{12\cdots 59}{50\cdots 60}a^{8}-\frac{28\cdots 51}{12\cdots 40}a^{7}-\frac{25\cdots 23}{12\cdots 40}a^{6}+\frac{41\cdots 51}{50\cdots 60}a^{5}-\frac{75\cdots 53}{10\cdots 72}a^{4}-\frac{24\cdots 21}{50\cdots 60}a^{3}+\frac{37\cdots 53}{12\cdots 40}a^{2}+\frac{12\cdots 67}{63\cdots 20}a-\frac{91\cdots 37}{11\cdots 40}$, $\frac{76\cdots 49}{25\cdots 80}a^{15}+\frac{24\cdots 01}{31\cdots 10}a^{14}-\frac{45\cdots 71}{12\cdots 40}a^{13}-\frac{33\cdots 57}{12\cdots 40}a^{12}+\frac{89\cdots 69}{12\cdots 40}a^{11}+\frac{22\cdots 43}{15\cdots 05}a^{10}-\frac{10\cdots 23}{25\cdots 80}a^{9}+\frac{17\cdots 71}{25\cdots 80}a^{8}+\frac{58\cdots 19}{31\cdots 10}a^{7}-\frac{23\cdots 09}{12\cdots 84}a^{6}+\frac{18\cdots 51}{25\cdots 80}a^{5}+\frac{19\cdots 51}{25\cdots 80}a^{4}+\frac{32\cdots 43}{25\cdots 80}a^{3}-\frac{26\cdots 61}{12\cdots 84}a^{2}-\frac{73\cdots 33}{15\cdots 05}a+\frac{55\cdots 19}{59\cdots 70}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 343368.044177 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 343368.044177 \cdot 5}{2\cdot\sqrt{5823129643646193092027401}}\cr\approx \mathstrut & 0.864093226339 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 10*x^14 + 42*x^13 + 122*x^12 - 708*x^11 + 749*x^10 + 2585*x^9 - 6198*x^8 + 2352*x^7 + 10883*x^6 - 13571*x^5 + 429*x^4 + 4438*x^3 + 1024*x^2 - 2584*x + 848) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 2*x^15 - 10*x^14 + 42*x^13 + 122*x^12 - 708*x^11 + 749*x^10 + 2585*x^9 - 6198*x^8 + 2352*x^7 + 10883*x^6 - 13571*x^5 + 429*x^4 + 4438*x^3 + 1024*x^2 - 2584*x + 848, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 - 10*x^14 + 42*x^13 + 122*x^12 - 708*x^11 + 749*x^10 + 2585*x^9 - 6198*x^8 + 2352*x^7 + 10883*x^6 - 13571*x^5 + 429*x^4 + 4438*x^3 + 1024*x^2 - 2584*x + 848); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 2*x^15 - 10*x^14 + 42*x^13 + 122*x^12 - 708*x^11 + 749*x^10 + 2585*x^9 - 6198*x^8 + 2352*x^7 + 10883*x^6 - 13571*x^5 + 429*x^4 + 4438*x^3 + 1024*x^2 - 2584*x + 848); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\wr C_2$ (as 16T42):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_4\wr C_2$
Character table for $C_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{29}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-203}) \), 4.2.5887.1 x2, 4.0.1421.1 x2, \(\Q(\sqrt{-7}, \sqrt{29})\), 8.0.2869341461.1, 8.0.2413116168701.1, 8.0.1698181681.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 8 siblings: 8.0.2413116168701.1, 8.0.2869341461.1
Degree 16 sibling: 16.4.4897252030306448390395044241.1
Minimal sibling: 8.0.2869341461.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }^{4}$ ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.2.0.1}{2} }^{8}$ R ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ ${\href{/padicField/13.2.0.1}{2} }^{8}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ R ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ ${\href{/padicField/47.8.0.1}{8} }^{2}$ ${\href{/padicField/53.1.0.1}{1} }^{16}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.2.4.6a1.3$x^{8} + 24 x^{7} + 228 x^{6} + 1080 x^{5} + 2646 x^{4} + 3240 x^{3} + 2052 x^{2} + 655 x + 109$$4$$2$$6$$Q_8$$$[\ ]_{4}^{2}$$
7.2.4.6a1.3$x^{8} + 24 x^{7} + 228 x^{6} + 1080 x^{5} + 2646 x^{4} + 3240 x^{3} + 2052 x^{2} + 655 x + 109$$4$$2$$6$$Q_8$$$[\ ]_{4}^{2}$$
\(29\) Copy content Toggle raw display 29.2.4.6a1.4$x^{8} + 96 x^{7} + 3464 x^{6} + 55872 x^{5} + 345624 x^{4} + 111744 x^{3} + 13856 x^{2} + 913 x + 799$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$
29.4.2.4a1.2$x^{8} + 4 x^{6} + 30 x^{5} + 8 x^{4} + 60 x^{3} + 233 x^{2} + 60 x + 33$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)