Properties

Label 16.0.516...201.6
Degree $16$
Signature $[0, 8]$
Discriminant $5.168\times 10^{41}$
Root discriminant \(404.65\)
Ramified primes $41,73$
Class number $4752$ (GRH)
Class group [4, 1188] (GRH)
Galois group $C_2^3.D_4$ (as 16T153)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 - 6*x^14 + 746*x^13 + 11012*x^12 - 109002*x^11 - 760306*x^10 + 575086*x^9 + 136726299*x^8 - 257788424*x^7 - 3644302168*x^6 - 1923255680*x^5 + 128360527152*x^4 + 46641207296*x^3 - 1170472049152*x^2 + 1532004884480*x + 9729481076736)
 
Copy content gp:K = bnfinit(y^16 - 6*y^15 - 6*y^14 + 746*y^13 + 11012*y^12 - 109002*y^11 - 760306*y^10 + 575086*y^9 + 136726299*y^8 - 257788424*y^7 - 3644302168*y^6 - 1923255680*y^5 + 128360527152*y^4 + 46641207296*y^3 - 1170472049152*y^2 + 1532004884480*y + 9729481076736, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 6*x^15 - 6*x^14 + 746*x^13 + 11012*x^12 - 109002*x^11 - 760306*x^10 + 575086*x^9 + 136726299*x^8 - 257788424*x^7 - 3644302168*x^6 - 1923255680*x^5 + 128360527152*x^4 + 46641207296*x^3 - 1170472049152*x^2 + 1532004884480*x + 9729481076736);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 6*x^15 - 6*x^14 + 746*x^13 + 11012*x^12 - 109002*x^11 - 760306*x^10 + 575086*x^9 + 136726299*x^8 - 257788424*x^7 - 3644302168*x^6 - 1923255680*x^5 + 128360527152*x^4 + 46641207296*x^3 - 1170472049152*x^2 + 1532004884480*x + 9729481076736)
 

\( x^{16} - 6 x^{15} - 6 x^{14} + 746 x^{13} + 11012 x^{12} - 109002 x^{11} - 760306 x^{10} + \cdots + 9729481076736 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(516750138955503312702912555388547984539201\) \(\medspace = 41^{12}\cdot 73^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(404.65\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $41^{3/4}73^{3/4}\approx 404.65045925689327$
Ramified primes:   \(41\), \(73\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  8.0.427634354612630929.2

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{4}-\frac{1}{4}a^{3}-\frac{1}{8}a^{2}+\frac{1}{4}a$, $\frac{1}{16}a^{5}-\frac{1}{16}a^{4}-\frac{3}{16}a^{3}+\frac{1}{16}a^{2}-\frac{3}{8}a-\frac{1}{2}$, $\frac{1}{32}a^{6}-\frac{1}{16}a^{3}+\frac{7}{32}a^{2}-\frac{7}{16}a+\frac{1}{4}$, $\frac{1}{64}a^{7}-\frac{1}{32}a^{5}-\frac{1}{16}a^{4}+\frac{5}{64}a^{3}-\frac{3}{16}a^{2}-\frac{1}{16}a+\frac{1}{4}$, $\frac{1}{128}a^{8}-\frac{1}{64}a^{6}+\frac{1}{128}a^{4}-\frac{3}{16}a^{3}-\frac{1}{4}a^{2}+\frac{3}{16}a+\frac{1}{4}$, $\frac{1}{512}a^{9}+\frac{1}{512}a^{8}-\frac{1}{256}a^{7}-\frac{3}{256}a^{6}+\frac{9}{512}a^{5}+\frac{17}{512}a^{4}-\frac{13}{64}a^{3}-\frac{19}{128}a^{2}+\frac{3}{16}a+\frac{1}{8}$, $\frac{1}{2048}a^{10}-\frac{3}{2048}a^{8}-\frac{3}{512}a^{7}+\frac{31}{2048}a^{6}+\frac{3}{256}a^{5}+\frac{103}{2048}a^{4}+\frac{21}{512}a^{3}+\frac{111}{512}a^{2}+\frac{29}{64}a+\frac{7}{32}$, $\frac{1}{4096}a^{11}-\frac{3}{4096}a^{9}-\frac{3}{1024}a^{8}+\frac{31}{4096}a^{7}+\frac{3}{512}a^{6}-\frac{25}{4096}a^{5}-\frac{11}{1024}a^{4}-\frac{177}{1024}a^{3}+\frac{1}{128}a^{2}+\frac{27}{64}a+\frac{1}{4}$, $\frac{1}{671744}a^{12}-\frac{9}{335872}a^{11}-\frac{131}{671744}a^{10}-\frac{295}{335872}a^{9}-\frac{769}{671744}a^{8}-\frac{1267}{335872}a^{7}+\frac{1287}{671744}a^{6}-\frac{7697}{335872}a^{5}+\frac{7159}{167936}a^{4}-\frac{16291}{83968}a^{3}-\frac{1147}{20992}a^{2}-\frac{909}{5248}a-\frac{471}{1312}$, $\frac{1}{10747904}a^{13}-\frac{7}{10747904}a^{12}-\frac{329}{10747904}a^{11}+\frac{593}{10747904}a^{10}+\frac{8485}{10747904}a^{9}+\frac{7375}{10747904}a^{8}-\frac{26587}{10747904}a^{7}-\frac{14357}{10747904}a^{6}-\frac{135949}{5373952}a^{5}-\frac{100121}{2686976}a^{4}-\frac{174605}{1343488}a^{3}-\frac{82181}{335872}a^{2}+\frac{35677}{83968}a+\frac{9251}{20992}$, $\frac{1}{2622488576}a^{14}+\frac{107}{2622488576}a^{13}-\frac{1799}{2622488576}a^{12}-\frac{250481}{2622488576}a^{11}+\frac{237591}{2622488576}a^{10}-\frac{1352567}{2622488576}a^{9}-\frac{9406477}{2622488576}a^{8}+\frac{224649}{42991616}a^{7}-\frac{1121077}{655622144}a^{6}+\frac{4124633}{327811072}a^{5}-\frac{9082487}{163905536}a^{4}+\frac{30225953}{163905536}a^{3}+\frac{7056285}{40976384}a^{2}-\frac{4215605}{10244096}a-\frac{911797}{2561024}$, $\frac{1}{59\cdots 08}a^{15}-\frac{56\cdots 65}{29\cdots 04}a^{14}-\frac{81\cdots 79}{29\cdots 04}a^{13}+\frac{10\cdots 05}{29\cdots 04}a^{12}+\frac{15\cdots 57}{14\cdots 52}a^{11}+\frac{71\cdots 15}{29\cdots 04}a^{10}+\frac{11\cdots 21}{99\cdots 68}a^{9}+\frac{34\cdots 91}{29\cdots 04}a^{8}+\frac{23\cdots 99}{59\cdots 08}a^{7}+\frac{60\cdots 65}{24\cdots 32}a^{6}+\frac{91\cdots 81}{24\cdots 92}a^{5}+\frac{25\cdots 83}{18\cdots 44}a^{4}+\frac{32\cdots 55}{37\cdots 88}a^{3}-\frac{60\cdots 23}{31\cdots 24}a^{2}-\frac{51\cdots 71}{23\cdots 68}a-\frac{69\cdots 57}{19\cdots 64}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

Ideal class group:  $C_{4}\times C_{1188}$, which has order $4752$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{4}\times C_{1188}$, which has order $4752$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{85\cdots 75}{56\cdots 52}a^{15}-\frac{44\cdots 75}{28\cdots 76}a^{14}-\frac{34\cdots 25}{28\cdots 76}a^{13}+\frac{39\cdots 75}{28\cdots 76}a^{12}+\frac{16\cdots 25}{14\cdots 88}a^{11}-\frac{73\cdots 75}{28\cdots 76}a^{10}-\frac{25\cdots 75}{28\cdots 76}a^{9}+\frac{28\cdots 25}{28\cdots 76}a^{8}+\frac{13\cdots 25}{56\cdots 52}a^{7}-\frac{16\cdots 25}{14\cdots 88}a^{6}-\frac{64\cdots 75}{70\cdots 44}a^{5}+\frac{43\cdots 75}{17\cdots 36}a^{4}+\frac{96\cdots 25}{35\cdots 72}a^{3}-\frac{13\cdots 75}{88\cdots 68}a^{2}-\frac{88\cdots 25}{22\cdots 92}a-\frac{38\cdots 89}{55\cdots 48}$, $\frac{11\cdots 23}{64\cdots 48}a^{15}+\frac{96\cdots 05}{32\cdots 24}a^{14}+\frac{84\cdots 19}{32\cdots 24}a^{13}+\frac{92\cdots 11}{32\cdots 24}a^{12}+\frac{82\cdots 95}{16\cdots 12}a^{11}+\frac{21\cdots 49}{32\cdots 24}a^{10}+\frac{27\cdots 75}{10\cdots 08}a^{9}-\frac{36\cdots 43}{32\cdots 24}a^{8}-\frac{10\cdots 19}{64\cdots 48}a^{7}+\frac{99\cdots 43}{16\cdots 12}a^{6}+\frac{25\cdots 39}{26\cdots 52}a^{5}+\frac{62\cdots 23}{20\cdots 64}a^{4}-\frac{16\cdots 67}{40\cdots 28}a^{3}-\frac{25\cdots 33}{33\cdots 44}a^{2}+\frac{33\cdots 99}{25\cdots 08}a+\frac{63\cdots 21}{20\cdots 84}$, $\frac{12\cdots 99}{18\cdots 88}a^{15}-\frac{14\cdots 31}{93\cdots 44}a^{14}+\frac{10\cdots 87}{93\cdots 44}a^{13}+\frac{10\cdots 39}{93\cdots 44}a^{12}-\frac{73\cdots 71}{46\cdots 72}a^{11}-\frac{95\cdots 51}{93\cdots 44}a^{10}+\frac{21\cdots 13}{93\cdots 44}a^{9}-\frac{57\cdots 07}{93\cdots 44}a^{8}-\frac{84\cdots 59}{18\cdots 88}a^{7}+\frac{24\cdots 07}{46\cdots 72}a^{6}+\frac{46\cdots 09}{23\cdots 36}a^{5}-\frac{32\cdots 09}{58\cdots 84}a^{4}-\frac{24\cdots 11}{11\cdots 68}a^{3}+\frac{23\cdots 49}{29\cdots 92}a^{2}+\frac{38\cdots 11}{72\cdots 48}a-\frac{98\cdots 37}{18\cdots 12}$, $\frac{30\cdots 39}{36\cdots 72}a^{15}-\frac{22\cdots 31}{74\cdots 76}a^{14}-\frac{12\cdots 89}{74\cdots 76}a^{13}+\frac{44\cdots 95}{74\cdots 76}a^{12}+\frac{40\cdots 93}{37\cdots 88}a^{11}-\frac{50\cdots 07}{74\cdots 76}a^{10}-\frac{21\cdots 09}{24\cdots 92}a^{9}-\frac{10\cdots 03}{74\cdots 76}a^{8}+\frac{42\cdots 33}{36\cdots 72}a^{7}+\frac{31\cdots 45}{37\cdots 88}a^{6}-\frac{21\cdots 87}{62\cdots 48}a^{5}-\frac{26\cdots 53}{23\cdots 68}a^{4}+\frac{86\cdots 41}{93\cdots 72}a^{3}+\frac{27\cdots 15}{78\cdots 56}a^{2}-\frac{21\cdots 65}{58\cdots 92}a-\frac{90\cdots 43}{48\cdots 16}$, $\frac{92\cdots 65}{74\cdots 76}a^{15}-\frac{60\cdots 07}{37\cdots 88}a^{14}+\frac{27\cdots 63}{37\cdots 88}a^{13}+\frac{43\cdots 23}{37\cdots 88}a^{12}-\frac{20\cdots 43}{46\cdots 36}a^{11}-\frac{11\cdots 95}{37\cdots 88}a^{10}-\frac{16\cdots 65}{12\cdots 96}a^{9}+\frac{66\cdots 17}{37\cdots 88}a^{8}+\frac{23\cdots 99}{74\cdots 76}a^{7}-\frac{70\cdots 75}{18\cdots 44}a^{6}-\frac{48\cdots 55}{31\cdots 24}a^{5}+\frac{36\cdots 21}{23\cdots 68}a^{4}+\frac{87\cdots 19}{46\cdots 36}a^{3}-\frac{63\cdots 27}{39\cdots 28}a^{2}+\frac{28\cdots 25}{29\cdots 96}a+\frac{30\cdots 91}{24\cdots 08}$, $\frac{35\cdots 01}{29\cdots 04}a^{15}-\frac{47\cdots 15}{14\cdots 52}a^{14}-\frac{32\cdots 01}{14\cdots 52}a^{13}+\frac{73\cdots 91}{14\cdots 52}a^{12}-\frac{12\cdots 41}{37\cdots 88}a^{11}+\frac{32\cdots 97}{14\cdots 52}a^{10}-\frac{50\cdots 01}{12\cdots 24}a^{9}+\frac{48\cdots 33}{14\cdots 52}a^{8}+\frac{49\cdots 43}{29\cdots 04}a^{7}-\frac{35\cdots 83}{74\cdots 76}a^{6}-\frac{51\cdots 11}{12\cdots 96}a^{5}+\frac{24\cdots 01}{93\cdots 72}a^{4}+\frac{95\cdots 71}{18\cdots 44}a^{3}-\frac{48\cdots 27}{15\cdots 12}a^{2}+\frac{84\cdots 77}{11\cdots 84}a+\frac{23\cdots 75}{97\cdots 32}$, $\frac{40\cdots 91}{29\cdots 04}a^{15}-\frac{20\cdots 09}{14\cdots 52}a^{14}-\frac{44\cdots 03}{14\cdots 52}a^{13}+\frac{13\cdots 45}{14\cdots 52}a^{12}+\frac{72\cdots 09}{37\cdots 88}a^{11}-\frac{88\cdots 01}{14\cdots 52}a^{10}-\frac{76\cdots 55}{49\cdots 84}a^{9}-\frac{92\cdots 81}{14\cdots 52}a^{8}+\frac{50\cdots 65}{29\cdots 04}a^{7}+\frac{42\cdots 91}{74\cdots 76}a^{6}-\frac{49\cdots 61}{12\cdots 96}a^{5}-\frac{26\cdots 91}{93\cdots 72}a^{4}+\frac{14\cdots 73}{18\cdots 44}a^{3}+\frac{11\cdots 67}{15\cdots 12}a^{2}+\frac{15\cdots 71}{11\cdots 84}a+\frac{13\cdots 13}{97\cdots 32}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9410025743600000 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 9410025743600000 \cdot 4752}{2\cdot\sqrt{516750138955503312702912555388547984539201}}\cr\approx \mathstrut & 75550.2478961930 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 - 6*x^14 + 746*x^13 + 11012*x^12 - 109002*x^11 - 760306*x^10 + 575086*x^9 + 136726299*x^8 - 257788424*x^7 - 3644302168*x^6 - 1923255680*x^5 + 128360527152*x^4 + 46641207296*x^3 - 1170472049152*x^2 + 1532004884480*x + 9729481076736) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 6*x^15 - 6*x^14 + 746*x^13 + 11012*x^12 - 109002*x^11 - 760306*x^10 + 575086*x^9 + 136726299*x^8 - 257788424*x^7 - 3644302168*x^6 - 1923255680*x^5 + 128360527152*x^4 + 46641207296*x^3 - 1170472049152*x^2 + 1532004884480*x + 9729481076736, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 6*x^15 - 6*x^14 + 746*x^13 + 11012*x^12 - 109002*x^11 - 760306*x^10 + 575086*x^9 + 136726299*x^8 - 257788424*x^7 - 3644302168*x^6 - 1923255680*x^5 + 128360527152*x^4 + 46641207296*x^3 - 1170472049152*x^2 + 1532004884480*x + 9729481076736); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 6*x^15 - 6*x^14 + 746*x^13 + 11012*x^12 - 109002*x^11 - 760306*x^10 + 575086*x^9 + 136726299*x^8 - 257788424*x^7 - 3644302168*x^6 - 1923255680*x^5 + 128360527152*x^4 + 46641207296*x^3 - 1170472049152*x^2 + 1532004884480*x + 9729481076736); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3.D_4$ (as 16T153):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 64
The 13 conjugacy class representatives for $C_2^3.D_4$
Character table for $C_2^3.D_4$

Intermediate fields

\(\Q(\sqrt{73}) \), 4.0.218489.1, 4.4.653937577.1, 4.0.15949697.1, 8.0.427634354612630929.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: 16.8.516750138955503312702912555388547984539201.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.1.0.1}{1} }^{16}$ ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{4}$ ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.2.0.1}{2} }^{8}$ R ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.8.0.1}{8} }^{2}$ ${\href{/padicField/53.8.0.1}{8} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(41\) Copy content Toggle raw display 41.2.4.6a1.2$x^{8} + 152 x^{7} + 8688 x^{6} + 222224 x^{5} + 2189320 x^{4} + 1333344 x^{3} + 312768 x^{2} + 32832 x + 1337$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$
41.2.4.6a1.2$x^{8} + 152 x^{7} + 8688 x^{6} + 222224 x^{5} + 2189320 x^{4} + 1333344 x^{3} + 312768 x^{2} + 32832 x + 1337$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$
\(73\) Copy content Toggle raw display 73.1.4.3a1.1$x^{4} + 73$$4$$1$$3$$C_4$$$[\ ]_{4}$$
73.1.4.3a1.1$x^{4} + 73$$4$$1$$3$$C_4$$$[\ ]_{4}$$
73.1.4.3a1.1$x^{4} + 73$$4$$1$$3$$C_4$$$[\ ]_{4}$$
73.1.4.3a1.1$x^{4} + 73$$4$$1$$3$$C_4$$$[\ ]_{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)