Normalized defining polynomial
\( x^{16} - 2 x^{15} + 9 x^{14} - 14 x^{13} + 53 x^{12} - 64 x^{11} + 115 x^{10} - 135 x^{9} + 209 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(38999408308687890625\)
\(\medspace = 5^{8}\cdot 29^{4}\cdot 109^{4}\)
|
| |
Root discriminant: | \(16.77\) |
| |
Galois root discriminant: | $5^{1/2}29^{1/2}109^{1/2}\approx 125.7179382586272$ | ||
Ramified primes: |
\(5\), \(29\), \(109\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.6244950625.4 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1069942743617}a^{15}-\frac{465573626959}{1069942743617}a^{14}-\frac{522800500049}{1069942743617}a^{13}-\frac{175958233490}{1069942743617}a^{12}+\frac{212003060382}{1069942743617}a^{11}+\frac{88377629972}{1069942743617}a^{10}-\frac{483601359088}{1069942743617}a^{9}+\frac{359093905859}{1069942743617}a^{8}+\frac{135144920852}{1069942743617}a^{7}+\frac{205184377516}{1069942743617}a^{6}+\frac{46384805888}{1069942743617}a^{5}+\frac{183701034910}{1069942743617}a^{4}+\frac{247178181203}{1069942743617}a^{3}+\frac{11914510016}{97267522147}a^{2}+\frac{507966461668}{1069942743617}a+\frac{8126481065}{1069942743617}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{749440103047}{1069942743617}a^{15}-\frac{1193678770348}{1069942743617}a^{14}+\frac{6208342111780}{1069942743617}a^{13}-\frac{7885749640460}{1069942743617}a^{12}+\frac{36062394343266}{1069942743617}a^{11}-\frac{32718227160332}{1069942743617}a^{10}+\frac{70221173147413}{1069942743617}a^{9}-\frac{70226755079693}{1069942743617}a^{8}+\frac{122126558994481}{1069942743617}a^{7}-\frac{84237998493863}{1069942743617}a^{6}+\frac{108965365581825}{1069942743617}a^{5}-\frac{60679860879907}{1069942743617}a^{4}+\frac{56263712501255}{1069942743617}a^{3}-\frac{1726582885028}{97267522147}a^{2}+\frac{8613858374626}{1069942743617}a+\frac{51773575988}{1069942743617}$, $\frac{537576283419}{1069942743617}a^{15}-\frac{1838589367537}{1069942743617}a^{14}+\frac{5987887099186}{1069942743617}a^{13}-\frac{13486130617404}{1069942743617}a^{12}+\frac{35689075629006}{1069942743617}a^{11}-\frac{68574030259740}{1069942743617}a^{10}+\frac{90298900713264}{1069942743617}a^{9}-\frac{130544537481849}{1069942743617}a^{8}+\frac{172452130530387}{1069942743617}a^{7}-\frac{202014525633511}{1069942743617}a^{6}+\frac{171125777754742}{1069942743617}a^{5}-\frac{156367440357367}{1069942743617}a^{4}+\frac{108736992797040}{1069942743617}a^{3}-\frac{6025582540506}{97267522147}a^{2}+\frac{23431842535865}{1069942743617}a-\frac{4691283348861}{1069942743617}$, $\frac{552585972408}{1069942743617}a^{15}-\frac{587307242167}{1069942743617}a^{14}+\frac{4108110251375}{1069942743617}a^{13}-\frac{3547121230921}{1069942743617}a^{12}+\frac{23684048580557}{1069942743617}a^{11}-\frac{11202397764298}{1069942743617}a^{10}+\frac{40016265646118}{1069942743617}a^{9}-\frac{31017824552791}{1069942743617}a^{8}+\frac{66300475436042}{1069942743617}a^{7}-\frac{24432385424350}{1069942743617}a^{6}+\frac{56057031775362}{1069942743617}a^{5}-\frac{19155685430114}{1069942743617}a^{4}+\frac{24745937479074}{1069942743617}a^{3}-\frac{420877343956}{97267522147}a^{2}+\frac{3111674796883}{1069942743617}a-\frac{1020425328931}{1069942743617}$, $\frac{690769610952}{1069942743617}a^{15}-\frac{937750044883}{1069942743617}a^{14}+\frac{5276710261759}{1069942743617}a^{13}-\frac{5689588448067}{1069942743617}a^{12}+\frac{30146785250767}{1069942743617}a^{11}-\frac{20973879664701}{1069942743617}a^{10}+\frac{49745816876192}{1069942743617}a^{9}-\frac{44816171923348}{1069942743617}a^{8}+\frac{85018315083910}{1069942743617}a^{7}-\frac{40688660296271}{1069942743617}a^{6}+\frac{60656501237770}{1069942743617}a^{5}-\frac{24484253122261}{1069942743617}a^{4}+\frac{23237882491661}{1069942743617}a^{3}-\frac{53725747960}{97267522147}a^{2}-\frac{1745836726583}{1069942743617}a+\frac{1521561018920}{1069942743617}$, $\frac{763436800699}{1069942743617}a^{15}-\frac{1149700548415}{1069942743617}a^{14}+\frac{5960062649538}{1069942743617}a^{13}-\frac{7197532607799}{1069942743617}a^{12}+\frac{34169148120924}{1069942743617}a^{11}-\frac{28477628120079}{1069942743617}a^{10}+\frac{57971739220284}{1069942743617}a^{9}-\frac{60098687295816}{1069942743617}a^{8}+\frac{102025336917577}{1069942743617}a^{7}-\frac{61460215937266}{1069942743617}a^{6}+\frac{76268574127936}{1069942743617}a^{5}-\frac{43690262503341}{1069942743617}a^{4}+\frac{32414102090169}{1069942743617}a^{3}-\frac{761791509103}{97267522147}a^{2}+\frac{928249364928}{1069942743617}a+\frac{537576283419}{1069942743617}$, $\frac{107651732597}{1069942743617}a^{15}-\frac{92546525040}{1069942743617}a^{14}+\frac{706998353803}{1069942743617}a^{13}-\frac{446429746852}{1069942743617}a^{12}+\frac{3981618491791}{1069942743617}a^{11}-\frac{803915008689}{1069942743617}a^{10}+\frac{4534450953162}{1069942743617}a^{9}-\frac{3041508529144}{1069942743617}a^{8}+\frac{7705923600642}{1069942743617}a^{7}+\frac{1104635495848}{1069942743617}a^{6}+\frac{1541414104181}{1069942743617}a^{5}+\frac{768434036463}{1069942743617}a^{4}-\frac{977182776785}{1069942743617}a^{3}+\frac{252131455758}{97267522147}a^{2}-\frac{2294635780942}{1069942743617}a+\frac{218291773500}{1069942743617}$, $\frac{1251495669432}{1069942743617}a^{15}-\frac{2336669114172}{1069942743617}a^{14}+\frac{10914985774383}{1069942743617}a^{13}-\frac{15882309168224}{1069942743617}a^{12}+\frac{63686679540651}{1069942743617}a^{11}-\frac{70198495259358}{1069942743617}a^{10}+\frac{131373739480360}{1069942743617}a^{9}-\frac{143942108148937}{1069942743617}a^{8}+\frac{233110503225799}{1069942743617}a^{7}-\frac{187964027003139}{1069942743617}a^{6}+\frac{212860413862384}{1069942743617}a^{5}-\frac{136622576297132}{1069942743617}a^{4}+\frac{116003802280089}{1069942743617}a^{3}-\frac{4254143631037}{97267522147}a^{2}+\frac{19413896249686}{1069942743617}a-\frac{1765353109374}{1069942743617}$
|
| |
Regulator: | \( 558.777866748 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 558.777866748 \cdot 2}{2\cdot\sqrt{38999408308687890625}}\cr\approx \mathstrut & 0.217344739479 \end{aligned}\]
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.57293125.2, 8.4.57293125.1, 8.0.6244950625.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.8.38999408308687890625.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(29\)
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(109\)
| $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
109.1.2.1a1.1 | $x^{2} + 109$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
109.2.1.0a1.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
109.1.2.1a1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
109.1.2.1a1.1 | $x^{2} + 109$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
109.1.2.1a1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
109.2.1.0a1.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |