Normalized defining polynomial
\( x^{16} - 20 x^{12} - 16 x^{11} + 32 x^{10} + 64 x^{9} + 138 x^{8} + 288 x^{7} + 448 x^{6} + 704 x^{5} + \cdots + 243 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(382511685112441262309376\)
\(\medspace = 2^{72}\cdot 3^{4}\)
|
| |
| Root discriminant: | \(29.78\) |
| |
| Galois root discriminant: | $2^{1269/256}3^{1/2}\approx 53.79918827448669$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{10}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{10}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{14}+\frac{1}{3}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{55\cdots 87}a^{15}-\frac{221611186472908}{61\cdots 43}a^{14}+\frac{42075105751314}{685310410957027}a^{13}-\frac{40813573820384}{20\cdots 81}a^{12}+\frac{60\cdots 72}{55\cdots 87}a^{11}-\frac{18\cdots 53}{55\cdots 87}a^{10}-\frac{48\cdots 27}{55\cdots 87}a^{9}+\frac{16\cdots 09}{55\cdots 87}a^{8}-\frac{49\cdots 18}{18\cdots 29}a^{7}+\frac{799808263889690}{61\cdots 43}a^{6}+\frac{20\cdots 55}{55\cdots 87}a^{5}+\frac{24\cdots 89}{55\cdots 87}a^{4}+\frac{19\cdots 68}{55\cdots 87}a^{3}+\frac{16\cdots 65}{55\cdots 87}a^{2}+\frac{88\cdots 96}{18\cdots 29}a+\frac{117801546308203}{20\cdots 81}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{961718999632840}{55\cdots 87}a^{15}-\frac{50506288236256}{61\cdots 43}a^{14}-\frac{10124221698916}{20\cdots 81}a^{13}+\frac{40666344724171}{20\cdots 81}a^{12}-\frac{20\cdots 32}{55\cdots 87}a^{11}-\frac{44\cdots 12}{55\cdots 87}a^{10}+\frac{42\cdots 52}{55\cdots 87}a^{9}+\frac{29\cdots 84}{55\cdots 87}a^{8}+\frac{36\cdots 88}{18\cdots 29}a^{7}+\frac{24\cdots 44}{61\cdots 43}a^{6}+\frac{28\cdots 84}{55\cdots 87}a^{5}+\frac{52\cdots 95}{55\cdots 87}a^{4}+\frac{74\cdots 60}{55\cdots 87}a^{3}+\frac{86\cdots 16}{55\cdots 87}a^{2}+\frac{26\cdots 08}{18\cdots 29}a+\frac{11\cdots 23}{20\cdots 81}$, $\frac{677527181538530}{55\cdots 87}a^{15}-\frac{138636674620253}{61\cdots 43}a^{14}+\frac{17715022359454}{20\cdots 81}a^{13}+\frac{44636567486414}{20\cdots 81}a^{12}-\frac{15\cdots 71}{55\cdots 87}a^{11}+\frac{16\cdots 09}{55\cdots 87}a^{10}+\frac{30\cdots 91}{55\cdots 87}a^{9}-\frac{24\cdots 30}{55\cdots 87}a^{8}+\frac{16\cdots 61}{18\cdots 29}a^{7}+\frac{10\cdots 57}{61\cdots 43}a^{6}+\frac{17\cdots 42}{55\cdots 87}a^{5}+\frac{10\cdots 24}{55\cdots 87}a^{4}+\frac{22\cdots 43}{55\cdots 87}a^{3}+\frac{47\cdots 67}{55\cdots 87}a^{2}-\frac{50\cdots 84}{18\cdots 29}a-\frac{23\cdots 05}{20\cdots 81}$, $\frac{20\cdots 42}{55\cdots 87}a^{15}+\frac{22\cdots 38}{61\cdots 43}a^{14}-\frac{679848698114392}{20\cdots 81}a^{13}+\frac{200201368509437}{685310410957027}a^{12}+\frac{39\cdots 07}{55\cdots 87}a^{11}-\frac{59\cdots 84}{55\cdots 87}a^{10}-\frac{61\cdots 03}{55\cdots 87}a^{9}-\frac{70\cdots 77}{55\cdots 87}a^{8}-\frac{70\cdots 73}{18\cdots 29}a^{7}-\frac{42\cdots 84}{61\cdots 43}a^{6}-\frac{53\cdots 92}{55\cdots 87}a^{5}-\frac{90\cdots 51}{55\cdots 87}a^{4}-\frac{13\cdots 59}{55\cdots 87}a^{3}-\frac{14\cdots 54}{55\cdots 87}a^{2}-\frac{42\cdots 08}{18\cdots 29}a-\frac{17\cdots 58}{20\cdots 81}$, $\frac{16\cdots 90}{55\cdots 87}a^{15}-\frac{192663168725494}{61\cdots 43}a^{14}+\frac{68121290939080}{20\cdots 81}a^{13}-\frac{71329127373620}{20\cdots 81}a^{12}-\frac{30\cdots 64}{55\cdots 87}a^{11}+\frac{82\cdots 65}{55\cdots 87}a^{10}+\frac{43\cdots 80}{55\cdots 87}a^{9}+\frac{57\cdots 95}{55\cdots 87}a^{8}+\frac{57\cdots 37}{18\cdots 29}a^{7}+\frac{29\cdots 20}{61\cdots 43}a^{6}+\frac{41\cdots 44}{55\cdots 87}a^{5}+\frac{72\cdots 19}{55\cdots 87}a^{4}+\frac{97\cdots 90}{55\cdots 87}a^{3}+\frac{11\cdots 61}{55\cdots 87}a^{2}+\frac{34\cdots 57}{18\cdots 29}a+\frac{12\cdots 75}{20\cdots 81}$, $\frac{92\cdots 82}{55\cdots 87}a^{15}+\frac{827813777154827}{61\cdots 43}a^{14}-\frac{204336836410414}{20\cdots 81}a^{13}+\frac{49102236107439}{685310410957027}a^{12}+\frac{18\cdots 48}{55\cdots 87}a^{11}+\frac{18\cdots 22}{55\cdots 87}a^{10}-\frac{30\cdots 88}{55\cdots 87}a^{9}-\frac{33\cdots 12}{55\cdots 87}a^{8}-\frac{32\cdots 03}{18\cdots 29}a^{7}-\frac{20\cdots 17}{61\cdots 43}a^{6}-\frac{25\cdots 78}{55\cdots 87}a^{5}-\frac{43\cdots 76}{55\cdots 87}a^{4}-\frac{63\cdots 34}{55\cdots 87}a^{3}-\frac{71\cdots 00}{55\cdots 87}a^{2}-\frac{21\cdots 99}{18\cdots 29}a-\frac{91\cdots 84}{20\cdots 81}$, $\frac{16\cdots 28}{55\cdots 87}a^{15}+\frac{17\cdots 24}{61\cdots 43}a^{14}-\frac{520844981410141}{20\cdots 81}a^{13}+\frac{442040522108884}{20\cdots 81}a^{12}+\frac{32\cdots 09}{55\cdots 87}a^{11}-\frac{36\cdots 17}{55\cdots 87}a^{10}-\frac{50\cdots 71}{55\cdots 87}a^{9}-\frac{57\cdots 79}{55\cdots 87}a^{8}-\frac{58\cdots 07}{18\cdots 29}a^{7}-\frac{35\cdots 13}{61\cdots 43}a^{6}-\frac{44\cdots 06}{55\cdots 87}a^{5}-\frac{74\cdots 07}{55\cdots 87}a^{4}-\frac{10\cdots 98}{55\cdots 87}a^{3}-\frac{12\cdots 80}{55\cdots 87}a^{2}-\frac{36\cdots 80}{18\cdots 29}a-\frac{15\cdots 77}{20\cdots 81}$, $\frac{12\cdots 13}{55\cdots 87}a^{15}+\frac{11\cdots 93}{61\cdots 43}a^{14}-\frac{33\cdots 44}{20\cdots 81}a^{13}+\frac{26\cdots 02}{20\cdots 81}a^{12}+\frac{23\cdots 15}{55\cdots 87}a^{11}-\frac{15\cdots 89}{55\cdots 87}a^{10}-\frac{38\cdots 62}{55\cdots 87}a^{9}-\frac{43\cdots 17}{55\cdots 87}a^{8}-\frac{42\cdots 97}{18\cdots 29}a^{7}-\frac{26\cdots 15}{61\cdots 43}a^{6}-\frac{33\cdots 78}{55\cdots 87}a^{5}-\frac{55\cdots 22}{55\cdots 87}a^{4}-\frac{81\cdots 61}{55\cdots 87}a^{3}-\frac{91\cdots 43}{55\cdots 87}a^{2}-\frac{26\cdots 54}{18\cdots 29}a-\frac{11\cdots 36}{20\cdots 81}$
|
| |
| Regulator: | \( 1504069.3268466603 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1504069.3268466603 \cdot 1}{2\cdot\sqrt{382511685112441262309376}}\cr\approx \mathstrut & 2.95361885968698 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1276):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.2048.1, 8.0.3221225472.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.72d1.113 | $x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{10} + 16 x^{9} + 16 x^{6} + 2$ | $16$ | $1$ | $72$ | 16T1276 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$$ |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |