Properties

Label 16.0.331...376.2
Degree $16$
Signature $[0, 8]$
Discriminant $3.313\times 10^{25}$
Root discriminant \(39.36\)
Ramified primes $2,3,19,103$
Class number $196$ (GRH)
Class group [196] (GRH)
Galois group $C_{2440}.D_6$ (as 16T1757)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 27*x^14 + 295*x^12 + 1688*x^10 + 5432*x^8 + 9729*x^6 + 8855*x^4 + 3249*x^2 + 361)
 
gp: K = bnfinit(y^16 + 27*y^14 + 295*y^12 + 1688*y^10 + 5432*y^8 + 9729*y^6 + 8855*y^4 + 3249*y^2 + 361, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 27*x^14 + 295*x^12 + 1688*x^10 + 5432*x^8 + 9729*x^6 + 8855*x^4 + 3249*x^2 + 361);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 27*x^14 + 295*x^12 + 1688*x^10 + 5432*x^8 + 9729*x^6 + 8855*x^4 + 3249*x^2 + 361)
 

\( x^{16} + 27x^{14} + 295x^{12} + 1688x^{10} + 5432x^{8} + 9729x^{6} + 8855x^{4} + 3249x^{2} + 361 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(33133506085029178470629376\) \(\medspace = 2^{16}\cdot 3^{2}\cdot 19^{6}\cdot 103^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(39.36\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(19\), \(103\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{85}a^{12}-\frac{33}{85}a^{10}-\frac{13}{85}a^{8}+\frac{27}{85}a^{6}-\frac{19}{85}a^{4}+\frac{8}{85}a^{2}-\frac{3}{85}$, $\frac{1}{85}a^{13}-\frac{33}{85}a^{11}-\frac{13}{85}a^{9}+\frac{27}{85}a^{7}-\frac{19}{85}a^{5}+\frac{8}{85}a^{3}-\frac{3}{85}a$, $\frac{1}{4845}a^{14}-\frac{11}{4845}a^{12}-\frac{484}{4845}a^{10}+\frac{1441}{4845}a^{8}+\frac{10}{323}a^{6}+\frac{52}{323}a^{4}+\frac{1958}{4845}a^{2}+\frac{86}{255}$, $\frac{1}{4845}a^{15}-\frac{11}{4845}a^{13}-\frac{484}{4845}a^{11}+\frac{1441}{4845}a^{9}+\frac{10}{323}a^{7}+\frac{52}{323}a^{5}+\frac{1958}{4845}a^{3}+\frac{86}{255}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{196}$, which has order $196$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{101}{1615}a^{14}+\frac{2347}{1615}a^{12}+\frac{21112}{1615}a^{10}+\frac{94127}{1615}a^{8}+\frac{218336}{1615}a^{6}+\frac{248868}{1615}a^{4}+\frac{115602}{1615}a^{2}+\frac{183}{17}$, $\frac{271}{4845}a^{14}+\frac{1262}{969}a^{12}+\frac{3319}{285}a^{10}+\frac{245503}{4845}a^{8}+\frac{177919}{1615}a^{6}+\frac{171502}{1615}a^{4}+\frac{139826}{4845}a^{2}+\frac{674}{255}$, $\frac{148}{4845}a^{14}+\frac{3559}{4845}a^{12}+\frac{33362}{4845}a^{10}+\frac{155527}{4845}a^{8}+\frac{125143}{1615}a^{6}+\frac{144519}{1615}a^{4}+\frac{36217}{969}a^{2}+\frac{944}{255}$, $\frac{31}{969}a^{14}+\frac{3482}{4845}a^{12}+\frac{29974}{4845}a^{10}+\frac{7462}{285}a^{8}+\frac{93193}{1615}a^{6}+\frac{104349}{1615}a^{4}+\frac{165721}{4845}a^{2}+\frac{2056}{255}$, $\frac{128}{4845}a^{14}+\frac{2867}{4845}a^{12}+\frac{24688}{4845}a^{10}+\frac{104648}{4845}a^{8}+\frac{15112}{323}a^{6}+\frac{890}{19}a^{4}+\frac{76489}{4845}a^{2}+\frac{643}{255}$, $\frac{148}{4845}a^{14}+\frac{3559}{4845}a^{12}+\frac{33362}{4845}a^{10}+\frac{155527}{4845}a^{8}+\frac{125143}{1615}a^{6}+\frac{144519}{1615}a^{4}+\frac{36217}{969}a^{2}+\frac{689}{255}$, $\frac{101}{1615}a^{14}+\frac{2347}{1615}a^{12}+\frac{21112}{1615}a^{10}+\frac{94127}{1615}a^{8}+\frac{218336}{1615}a^{6}+\frac{248868}{1615}a^{4}+\frac{113987}{1615}a^{2}+\frac{132}{17}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8552.89250323 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 8552.89250323 \cdot 196}{2\cdot\sqrt{33133506085029178470629376}}\cr\approx \mathstrut & 0.353707557437 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 27*x^14 + 295*x^12 + 1688*x^10 + 5432*x^8 + 9729*x^6 + 8855*x^4 + 3249*x^2 + 361)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 27*x^14 + 295*x^12 + 1688*x^10 + 5432*x^8 + 9729*x^6 + 8855*x^4 + 3249*x^2 + 361, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 27*x^14 + 295*x^12 + 1688*x^10 + 5432*x^8 + 9729*x^6 + 8855*x^4 + 3249*x^2 + 361);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 27*x^14 + 295*x^12 + 1688*x^10 + 5432*x^8 + 9729*x^6 + 8855*x^4 + 3249*x^2 + 361);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{2440}.D_6$ (as 16T1757):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 12288
The 93 conjugacy class representatives for $C_{2440}.D_6$
Character table for $C_{2440}.D_6$

Intermediate fields

4.4.1957.1, 8.8.1183423341.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ R ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$2$$8$$16$
\(3\) Copy content Toggle raw display 3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.0.1$x^{3} + 2 x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.3.0.1$x^{3} + 2 x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.3.0.1$x^{3} + 2 x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.3.0.1$x^{3} + 2 x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
\(19\) Copy content Toggle raw display 19.2.0.1$x^{2} + 18 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} + 18 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.1$x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(103\) Copy content Toggle raw display 103.4.0.1$x^{4} + 2 x^{2} + 88 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
103.4.0.1$x^{4} + 2 x^{2} + 88 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
103.8.6.1$x^{8} + 408 x^{7} + 62444 x^{6} + 4250952 x^{5} + 108867812 x^{4} + 21296784 x^{3} + 7984592 x^{2} + 436638336 x + 11127635392$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$