Properties

Label 103.8.6.1
Base \(\Q_{103}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $D_4$ (as 8T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 408 x^{7} + 62444 x^{6} + 4250952 x^{5} + 108867812 x^{4} + 21296784 x^{3} + 7984592 x^{2} + 436638336 x + 11127635392\) Copy content Toggle raw display

Invariants

Base field: $\Q_{103}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{103}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 103 }) }$: $8$
This field is Galois over $\Q_{103}.$
Visible slopes:None

Intermediate fields

$\Q_{103}(\sqrt{3})$, $\Q_{103}(\sqrt{103})$, $\Q_{103}(\sqrt{103\cdot 3})$, 103.4.2.1, 103.4.3.1 x2, 103.4.3.2 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{103}(\sqrt{3})$ $\cong \Q_{103}(t)$ where $t$ is a root of \( x^{2} + 102 x + 5 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 103 \) $\ \in\Q_{103}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 4z^{2} + 6z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$D_4$ (as 8T4)
Inertia group:Intransitive group isomorphic to $C_4$
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:Not computed