Normalized defining polynomial
\( x^{16} - x^{15} - 15 x^{14} + 47 x^{13} + 255 x^{12} - 1999 x^{11} + 4971 x^{10} - 6331 x^{9} - 3164 x^{8} + 22124 x^{7} - 12352 x^{6} - 29264 x^{5} + 196928 x^{4} - 293824 x^{3} + 335616 x^{2} - 212992 x + 65536 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(269708720716852904093994140625=3^{8}\cdot 5^{12}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(64,·)$, $\chi_{255}(1,·)$, $\chi_{255}(2,·)$, $\chi_{255}(4,·)$, $\chi_{255}(8,·)$, $\chi_{255}(128,·)$, $\chi_{255}(16,·)$, $\chi_{255}(223,·)$, $\chi_{255}(32,·)$, $\chi_{255}(127,·)$, $\chi_{255}(239,·)$, $\chi_{255}(247,·)$, $\chi_{255}(251,·)$, $\chi_{255}(253,·)$, $\chi_{255}(254,·)$, $\chi_{255}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{128} a^{4} - \frac{1}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{9} + \frac{1}{64} a^{7} + \frac{1}{128} a^{5} - \frac{1}{32} a^{3}$, $\frac{1}{1024} a^{10} - \frac{3}{1024} a^{9} - \frac{1}{256} a^{8} - \frac{15}{512} a^{7} + \frac{21}{1024} a^{6} - \frac{19}{1024} a^{5} + \frac{11}{512} a^{4} - \frac{43}{256} a^{3} - \frac{21}{128} a^{2} - \frac{5}{32} a - \frac{1}{2}$, $\frac{1}{2048} a^{11} - \frac{1}{2048} a^{10} + \frac{3}{1024} a^{9} - \frac{3}{1024} a^{8} - \frac{7}{2048} a^{7} - \frac{41}{2048} a^{6} - \frac{1}{16} a^{5} + \frac{1}{64} a^{4} + \frac{1}{32} a^{3} + \frac{25}{128} a^{2} + \frac{11}{32} a - \frac{1}{2}$, $\frac{1}{2048} a^{12} - \frac{1}{2048} a^{10} + \frac{1}{1024} a^{9} - \frac{5}{2048} a^{8} + \frac{9}{512} a^{7} + \frac{57}{2048} a^{6} + \frac{1}{1024} a^{5} + \frac{19}{512} a^{4} - \frac{21}{256} a^{3} - \frac{3}{16} a^{2} + \frac{3}{16} a$, $\frac{1}{4096} a^{13} - \frac{1}{4096} a^{11} - \frac{1}{2048} a^{10} + \frac{7}{4096} a^{9} - \frac{3}{1024} a^{8} + \frac{49}{4096} a^{7} - \frac{41}{2048} a^{6} - \frac{29}{512} a^{5} + \frac{1}{64} a^{4} + \frac{51}{256} a^{3} + \frac{25}{128} a^{2} + \frac{5}{32} a - \frac{1}{2}$, $\frac{1}{1612693504} a^{14} + \frac{82403}{1612693504} a^{13} + \frac{160433}{1612693504} a^{12} - \frac{108489}{1612693504} a^{11} + \frac{106367}{1612693504} a^{10} + \frac{3205841}{1612693504} a^{9} - \frac{6060869}{1612693504} a^{8} - \frac{23516035}{1612693504} a^{7} - \frac{11028959}{403173376} a^{6} - \frac{2963847}{201586688} a^{5} - \frac{1159779}{100793344} a^{4} + \frac{16689133}{100793344} a^{3} - \frac{4696869}{25198336} a^{2} + \frac{625623}{1574896} a + \frac{15704}{98431}$, $\frac{1}{103212384256} a^{15} + \frac{21}{103212384256} a^{14} - \frac{2924097}{103212384256} a^{13} - \frac{8247143}{103212384256} a^{12} + \frac{19798565}{103212384256} a^{11} - \frac{34596513}{103212384256} a^{10} + \frac{119309717}{103212384256} a^{9} - \frac{174798829}{103212384256} a^{8} - \frac{1084955485}{51606192128} a^{7} - \frac{47282041}{6450774016} a^{6} + \frac{163332395}{3225387008} a^{5} - \frac{208610497}{6450774016} a^{4} + \frac{239072703}{3225387008} a^{3} + \frac{6424291}{806346752} a^{2} + \frac{5810793}{12599168} a - \frac{73363}{3149792}$
Class group and class number
$C_{2}\times C_{17520}$, which has order $35040$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 101041909.11303878 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-255}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-15}, \sqrt{17})\), 4.4.122825.1, 4.0.44217.1, 8.0.1221964430625.1, 8.8.519334883015625.2, 8.0.6411541765625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{16}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $17$ | 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |