Normalized defining polynomial
\( x^{16} - 8 x^{15} + 34 x^{14} - 98 x^{13} + 246 x^{12} - 566 x^{11} + 1142 x^{10} - 1904 x^{9} + \cdots + 41 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(216625969799691187890625\)
\(\medspace = 5^{8}\cdot 29^{4}\cdot 941^{4}\)
|
| |
Root discriminant: | \(28.74\) |
| |
Galois root discriminant: | $5^{1/2}29^{1/2}941^{1/2}\approx 369.3846233940985$ | ||
Ramified primes: |
\(5\), \(29\), \(941\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{128}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}+\frac{1}{5}a^{2}+\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{9}-\frac{2}{5}a^{7}-\frac{2}{5}a^{6}+\frac{1}{5}a^{5}-\frac{2}{5}a^{4}+\frac{1}{5}a^{2}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{5}a^{10}-\frac{1}{5}a^{6}+\frac{2}{5}a^{5}+\frac{1}{5}a^{4}-\frac{2}{5}a^{3}+\frac{1}{5}a^{2}-\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{11}-\frac{1}{5}a^{7}+\frac{2}{5}a^{6}+\frac{1}{5}a^{5}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}-\frac{2}{5}a^{2}+\frac{2}{5}a$, $\frac{1}{5}a^{12}-\frac{2}{5}a^{7}-\frac{1}{5}a^{4}-\frac{1}{5}a^{3}-\frac{2}{5}a^{2}+\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{13}+\frac{2}{5}a^{7}-\frac{2}{5}a^{6}-\frac{2}{5}a^{5}-\frac{1}{5}a^{2}+\frac{2}{5}$, $\frac{1}{1987435}a^{14}-\frac{7}{1987435}a^{13}-\frac{172453}{1987435}a^{12}-\frac{157652}{1987435}a^{11}+\frac{186337}{1987435}a^{10}-\frac{82939}{1987435}a^{9}+\frac{118802}{1987435}a^{8}+\frac{665}{4789}a^{7}+\frac{162184}{1987435}a^{6}-\frac{941408}{1987435}a^{5}-\frac{887978}{1987435}a^{4}+\frac{912201}{1987435}a^{3}-\frac{145294}{397487}a^{2}-\frac{674028}{1987435}a+\frac{648721}{1987435}$, $\frac{1}{1393191935}a^{15}+\frac{343}{1393191935}a^{14}-\frac{121408438}{1393191935}a^{13}+\frac{32098269}{1393191935}a^{12}+\frac{73396438}{1393191935}a^{11}-\frac{58085959}{1393191935}a^{10}+\frac{127302543}{1393191935}a^{9}+\frac{118571666}{1393191935}a^{8}-\frac{24531878}{278638387}a^{7}+\frac{630986681}{1393191935}a^{6}-\frac{313686324}{1393191935}a^{5}+\frac{675490174}{1393191935}a^{4}-\frac{598458629}{1393191935}a^{3}+\frac{70166332}{278638387}a^{2}-\frac{350532309}{1393191935}a+\frac{144772541}{1393191935}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Relative class number: | $2$ (assuming GRH) |
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1498}{1987435}a^{14}-\frac{10486}{1987435}a^{13}+\frac{31956}{1987435}a^{12}-\frac{55418}{1987435}a^{11}+\frac{96952}{1987435}a^{10}-\frac{226678}{1987435}a^{9}+\frac{288707}{1987435}a^{8}+\frac{58}{4789}a^{7}-\frac{310412}{1987435}a^{6}+\frac{54692}{1987435}a^{5}-\frac{597029}{1987435}a^{4}+\frac{301348}{397487}a^{3}-\frac{225023}{397487}a^{2}+\frac{320523}{1987435}a-\frac{3251553}{1987435}$, $\frac{1718410}{278638387}a^{15}-\frac{63347516}{1393191935}a^{14}+\frac{251188021}{1393191935}a^{13}-\frac{134609171}{278638387}a^{12}+\frac{19770858}{16785445}a^{11}-\frac{3696256809}{1393191935}a^{10}+\frac{1438970328}{278638387}a^{9}-\frac{11217691404}{1393191935}a^{8}+\frac{16102264633}{1393191935}a^{7}-\frac{21291139961}{1393191935}a^{6}+\frac{4974150347}{278638387}a^{5}-\frac{22821320293}{1393191935}a^{4}+\frac{21276553441}{1393191935}a^{3}-\frac{3204580040}{278638387}a^{2}+\frac{981021967}{278638387}a-\frac{1660279583}{1393191935}$, $\frac{1718410}{278638387}a^{15}-\frac{63347516}{1393191935}a^{14}+\frac{251188021}{1393191935}a^{13}-\frac{134609171}{278638387}a^{12}+\frac{19770858}{16785445}a^{11}-\frac{3696256809}{1393191935}a^{10}+\frac{1438970328}{278638387}a^{9}-\frac{11217691404}{1393191935}a^{8}+\frac{16102264633}{1393191935}a^{7}-\frac{21291139961}{1393191935}a^{6}+\frac{4974150347}{278638387}a^{5}-\frac{22821320293}{1393191935}a^{4}+\frac{21276553441}{1393191935}a^{3}-\frac{3204580040}{278638387}a^{2}+\frac{981021967}{278638387}a-\frac{267087648}{1393191935}$, $\frac{86319702}{1393191935}a^{15}-\frac{645779857}{1393191935}a^{14}+\frac{2590350234}{1393191935}a^{13}-\frac{7048768976}{1393191935}a^{12}+\frac{17318987137}{1393191935}a^{11}-\frac{39193323983}{1393191935}a^{10}+\frac{76604275167}{1393191935}a^{9}-\frac{121036354621}{1393191935}a^{8}+\frac{174888040294}{1393191935}a^{7}-\frac{46144071638}{278638387}a^{6}+\frac{53319756007}{278638387}a^{5}-\frac{244002735208}{1393191935}a^{4}+\frac{219092215868}{1393191935}a^{3}-\frac{31509226914}{278638387}a^{2}+\frac{9480800713}{278638387}a-\frac{1091801582}{278638387}$, $\frac{32412602}{1393191935}a^{15}-\frac{241216536}{1393191935}a^{14}+\frac{192360543}{278638387}a^{13}-\frac{2596219814}{1393191935}a^{12}+\frac{1269837369}{278638387}a^{11}-\frac{14336591234}{1393191935}a^{10}+\frac{27940032162}{1393191935}a^{9}-\frac{43831174452}{1393191935}a^{8}+\frac{63117919924}{1393191935}a^{7}-\frac{83406743149}{1393191935}a^{6}+\frac{96835895678}{1393191935}a^{5}-\frac{88789855356}{1393191935}a^{4}+\frac{81443970372}{1393191935}a^{3}-\frac{12001118919}{278638387}a^{2}+\frac{18218293353}{1393191935}a-\frac{907991556}{1393191935}$, $\frac{12499830}{278638387}a^{15}-\frac{465290499}{1393191935}a^{14}+\frac{1861393174}{1393191935}a^{13}-\frac{5059280417}{1393191935}a^{12}+\frac{12451344664}{1393191935}a^{11}-\frac{28182883289}{1393191935}a^{10}+\frac{55032907962}{1393191935}a^{9}-\frac{86967362841}{1393191935}a^{8}+\frac{126003081579}{1393191935}a^{7}-\frac{166322289889}{1393191935}a^{6}+\frac{191825736429}{1393191935}a^{5}-\frac{175977058163}{1393191935}a^{4}+\frac{31696476483}{278638387}a^{3}-\frac{113781565438}{1393191935}a^{2}+\frac{34198373776}{1393191935}a-\frac{4365338617}{1393191935}$, $\frac{15936650}{278638387}a^{15}-\frac{594171249}{1393191935}a^{14}+\frac{2379069242}{1393191935}a^{13}-\frac{6469483484}{1393191935}a^{12}+\frac{15919074896}{1393191935}a^{11}-\frac{36043486853}{1393191935}a^{10}+\frac{14084968011}{278638387}a^{9}-\frac{22265981502}{278638387}a^{8}+\frac{161321215907}{1393191935}a^{7}-\frac{213144605464}{1393191935}a^{6}+\frac{246212015427}{1393191935}a^{5}-\frac{225924780192}{1393191935}a^{4}+\frac{204222663608}{1393191935}a^{3}-\frac{147322169826}{1393191935}a^{2}+\frac{44361211868}{1393191935}a-\frac{7616313018}{1393191935}$
|
| |
Regulator: | \( 36913.3751226 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 36913.3751226 \cdot 2}{2\cdot\sqrt{216625969799691187890625}}\cr\approx \mathstrut & 0.192649303399 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.23525.1, 8.0.16049343125.1, 8.8.16049343125.1, 8.0.465430950625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(29\)
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
\(941\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $4$ | $2$ | $2$ | $2$ | ||||
Deg $4$ | $2$ | $2$ | $2$ |