Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{14} - 18 x^{13} + 32 x^{12} - 48 x^{11} + 62 x^{10} - 68 x^{9} + 73 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1606201369600000000\)
\(\medspace = 2^{16}\cdot 5^{8}\cdot 89^{4}\)
|
| |
Root discriminant: | \(13.74\) |
| |
Galois root discriminant: | $2^{3/2}5^{1/2}89^{1/2}\approx 59.665735560705194$ | ||
Ramified primes: |
\(2\), \(5\), \(89\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1623523}a^{15}-\frac{391239}{1623523}a^{14}+\frac{641735}{1623523}a^{13}+\frac{521592}{1623523}a^{12}+\frac{430351}{1623523}a^{11}+\frac{702705}{1623523}a^{10}-\frac{276362}{1623523}a^{9}+\frac{725771}{1623523}a^{8}+\frac{60136}{147593}a^{7}+\frac{543237}{1623523}a^{6}+\frac{444760}{1623523}a^{5}+\frac{269468}{1623523}a^{4}-\frac{223435}{1623523}a^{3}+\frac{243332}{1623523}a^{2}+\frac{146659}{1623523}a+\frac{416003}{1623523}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{21137}{147593}a^{15}-\frac{130546}{147593}a^{14}+\frac{408402}{147593}a^{13}-\frac{897368}{147593}a^{12}+\frac{1648427}{147593}a^{11}-\frac{2750237}{147593}a^{10}+\frac{3957171}{147593}a^{9}-\frac{4917769}{147593}a^{8}+\frac{5426631}{147593}a^{7}-\frac{5500686}{147593}a^{6}+\frac{4678961}{147593}a^{5}-\frac{3263393}{147593}a^{4}+\frac{1853928}{147593}a^{3}-\frac{897938}{147593}a^{2}+\frac{183097}{147593}a-\frac{92750}{147593}$, $\frac{56072}{147593}a^{15}-\frac{215246}{147593}a^{14}+\frac{486706}{147593}a^{13}-\frac{765035}{147593}a^{12}+\frac{1252074}{147593}a^{11}-\frac{1714008}{147593}a^{10}+\frac{1832901}{147593}a^{9}-\frac{1419529}{147593}a^{8}+\frac{1135219}{147593}a^{7}-\frac{301055}{147593}a^{6}-\frac{649269}{147593}a^{5}+\frac{1399844}{147593}a^{4}-\frac{1048666}{147593}a^{3}+\frac{910170}{147593}a^{2}-\frac{270919}{147593}a+\frac{227310}{147593}$, $\frac{757233}{1623523}a^{15}-\frac{3475216}{1623523}a^{14}+\frac{9497171}{1623523}a^{13}-\frac{18612211}{1623523}a^{12}+\frac{33289160}{1623523}a^{11}-\frac{51824244}{1623523}a^{10}+\frac{69876320}{1623523}a^{9}-\frac{80571714}{1623523}a^{8}+\frac{7770234}{147593}a^{7}-\frac{77838962}{1623523}a^{6}+\frac{60161265}{1623523}a^{5}-\frac{34896671}{1623523}a^{4}+\frac{16082274}{1623523}a^{3}-\frac{2722529}{1623523}a^{2}+\frac{1190778}{1623523}a+\frac{655532}{1623523}$, $\frac{545746}{1623523}a^{15}-\frac{2738995}{1623523}a^{14}+\frac{7668888}{1623523}a^{13}-\frac{15022234}{1623523}a^{12}+\frac{26228988}{1623523}a^{11}-\frac{41007067}{1623523}a^{10}+\frac{55406907}{1623523}a^{9}-\frac{62732972}{1623523}a^{8}+\frac{5958103}{147593}a^{7}-\frac{60562056}{1623523}a^{6}+\frac{46643489}{1623523}a^{5}-\frac{25230103}{1623523}a^{4}+\frac{12172635}{1623523}a^{3}-\frac{3468682}{1623523}a^{2}+\frac{2125760}{1623523}a+\frac{140441}{1623523}$, $\frac{263753}{1623523}a^{15}-\frac{961610}{1623523}a^{14}+\frac{2388136}{1623523}a^{13}-\frac{4260721}{1623523}a^{12}+\frac{7497896}{1623523}a^{11}-\frac{10574953}{1623523}a^{10}+\frac{12993729}{1623523}a^{9}-\frac{13435982}{1623523}a^{8}+\frac{1149407}{147593}a^{7}-\frac{8504473}{1623523}a^{6}+\frac{4000484}{1623523}a^{5}+\frac{1650556}{1623523}a^{4}-\frac{2637224}{1623523}a^{3}+\frac{4927852}{1623523}a^{2}-\frac{1931294}{1623523}a+\frac{1107873}{1623523}$, $\frac{1544}{147593}a^{15}+\frac{25133}{147593}a^{14}-\frac{100562}{147593}a^{13}+\frac{218233}{147593}a^{12}-\frac{296928}{147593}a^{11}+\frac{463156}{147593}a^{10}-\frac{601937}{147593}a^{9}+\frac{507147}{147593}a^{8}-\frac{141329}{147593}a^{7}-\frac{13091}{147593}a^{6}+\frac{254397}{147593}a^{5}-\frac{744040}{147593}a^{4}+\frac{826759}{147593}a^{3}-\frac{362356}{147593}a^{2}+\frac{33834}{147593}a-\frac{16104}{147593}$, $\frac{4484}{147593}a^{15}-\frac{25278}{147593}a^{14}+\frac{66612}{147593}a^{13}-\frac{87743}{147593}a^{12}+\frac{63002}{147593}a^{11}-\frac{33737}{147593}a^{10}-\frac{16380}{147593}a^{9}+\frac{226700}{147593}a^{8}-\frac{471236}{147593}a^{7}+\frac{442615}{147593}a^{6}-\frac{415555}{147593}a^{5}+\frac{540993}{147593}a^{4}-\frac{316442}{147593}a^{3}-\frac{54361}{147593}a^{2}+\frac{92141}{147593}a-\frac{70475}{147593}$
|
| |
Regulator: | \( 305.381044776 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 305.381044776 \cdot 1}{2\cdot\sqrt{1606201369600000000}}\cr\approx \mathstrut & 0.292651686916 \end{aligned}\]
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.400.1, 8.0.14240000.2, 8.0.14240000.1, 8.4.1267360000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.100387585600000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.2.8a3.1 | $x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 3$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $$[2, 2]^{4}$$ |
2.4.2.8a3.1 | $x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 3$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $$[2, 2]^{4}$$ | |
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(89\)
| 89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
89.2.2.2a1.2 | $x^{4} + 164 x^{3} + 6730 x^{2} + 492 x + 98$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
89.2.2.2a1.2 | $x^{4} + 164 x^{3} + 6730 x^{2} + 492 x + 98$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |