Normalized defining polynomial
\( x^{16} - 122 x^{14} + 7991 x^{12} - 330492 x^{10} + 11771701 x^{8} - 185395116 x^{6} + 1342090511 x^{4} - 1443329186 x^{2} + 8882874001 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(155448717458114694507131268341456449334209=47^{8}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $375.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{10} + \frac{1}{12} a^{8} - \frac{1}{12} a^{6} + \frac{1}{12} a^{4} + \frac{5}{12} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{12} a^{11} + \frac{1}{12} a^{9} - \frac{1}{12} a^{7} + \frac{1}{12} a^{5} + \frac{5}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{792} a^{12} - \frac{1}{24} a^{11} - \frac{1}{33} a^{10} + \frac{1}{12} a^{9} - \frac{83}{792} a^{8} - \frac{1}{12} a^{7} - \frac{31}{792} a^{6} + \frac{1}{12} a^{5} + \frac{61}{792} a^{4} + \frac{5}{12} a^{3} + \frac{3}{11} a^{2} + \frac{7}{24} a - \frac{203}{792}$, $\frac{1}{243144} a^{13} + \frac{771}{27016} a^{11} + \frac{1237}{243144} a^{9} - \frac{1}{8} a^{8} - \frac{39763}{243144} a^{7} - \frac{1}{8} a^{6} - \frac{57623}{243144} a^{5} - \frac{1}{8} a^{4} - \frac{125}{20262} a^{3} - \frac{1}{8} a^{2} + \frac{14633}{121572} a + \frac{3}{8}$, $\frac{1}{1775997587556611521823883362904} a^{14} - \frac{233342790215436310652564143}{1775997587556611521823883362904} a^{12} + \frac{70861560214548456656183261785}{1775997587556611521823883362904} a^{10} - \frac{1}{8} a^{9} + \frac{7897797524260694081031802457}{161454326141510138347625760264} a^{8} - \frac{1}{8} a^{7} - \frac{57248555262234820422080335597}{1775997587556611521823883362904} a^{6} - \frac{1}{8} a^{5} - \frac{135063181606080131891464972259}{887998793778305760911941681452} a^{4} - \frac{1}{8} a^{3} - \frac{12799427646125331994078799035}{887998793778305760911941681452} a^{2} - \frac{1}{8} a + \frac{2635937463812156730953761}{9421837831470952062217548}$, $\frac{1}{545231259379879737199932192411528} a^{15} - \frac{233342790215436310652564143}{545231259379879737199932192411528} a^{13} + \frac{12354844874147778149271376521871}{545231259379879737199932192411528} a^{11} - \frac{1}{24} a^{10} - \frac{5373913073859410584173160206343}{49566478125443612472721108401048} a^{9} - \frac{1}{24} a^{8} + \frac{90222628812198850872291990612023}{545231259379879737199932192411528} a^{7} - \frac{5}{24} a^{6} + \frac{19104910683590544687867271459201}{272615629689939868599966096205764} a^{5} - \frac{1}{24} a^{4} + \frac{56227124178313239525762227692925}{272615629689939868599966096205764} a^{3} - \frac{5}{24} a^{2} + \frac{93895921239884335631766259}{723126053565395570775196809} a - \frac{1}{3}$
Class group and class number
$C_{4}\times C_{16}\times C_{720}$, which has order $46080$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1817406770.17 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |