Normalized defining polynomial
\( x^{16} - 6 x^{15} - 8 x^{14} + 160 x^{13} - 441 x^{12} - 134 x^{11} + 4342 x^{10} - 16579 x^{9} + \cdots + 18419 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(14816104373013890157094140625\)
\(\medspace = 5^{8}\cdot 41^{14}\)
|
| |
| Root discriminant: | \(57.63\) |
| |
| Galois root discriminant: | $5^{1/2}41^{7/8}\approx 57.632953563318466$ | ||
| Ramified primes: |
\(5\), \(41\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{128}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{118}a^{14}-\frac{1}{118}a^{13}+\frac{15}{118}a^{12}-\frac{29}{118}a^{11}+\frac{11}{118}a^{10}+\frac{53}{118}a^{9}-\frac{41}{118}a^{8}-\frac{19}{118}a^{7}-\frac{57}{118}a^{6}-\frac{37}{118}a^{5}+\frac{41}{118}a^{4}+\frac{5}{118}a^{3}-\frac{57}{118}a^{2}+\frac{33}{118}a+\frac{27}{118}$, $\frac{1}{31\cdots 66}a^{15}+\frac{31\cdots 10}{15\cdots 83}a^{14}+\frac{21\cdots 82}{15\cdots 83}a^{13}+\frac{31\cdots 41}{15\cdots 83}a^{12}+\frac{40\cdots 07}{15\cdots 83}a^{11}-\frac{68\cdots 51}{15\cdots 83}a^{10}-\frac{41\cdots 21}{15\cdots 83}a^{9}+\frac{70\cdots 77}{15\cdots 83}a^{8}-\frac{32\cdots 36}{15\cdots 83}a^{7}-\frac{15\cdots 58}{15\cdots 83}a^{6}-\frac{22\cdots 53}{15\cdots 83}a^{5}-\frac{72\cdots 67}{15\cdots 83}a^{4}+\frac{40\cdots 08}{15\cdots 83}a^{3}+\frac{37\cdots 73}{15\cdots 83}a^{2}+\frac{39\cdots 69}{15\cdots 83}a+\frac{83\cdots 49}{31\cdots 66}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{3}\times C_{3}\times C_{6}$, which has order $54$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{3}\times C_{6}$, which has order $54$ (assuming GRH) |
| |
| Relative class number: | $54$ (assuming GRH) |
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{22\cdots 10}{42\cdots 71}a^{15}-\frac{13\cdots 31}{42\cdots 71}a^{14}-\frac{21\cdots 57}{42\cdots 71}a^{13}+\frac{36\cdots 59}{42\cdots 71}a^{12}-\frac{92\cdots 09}{42\cdots 71}a^{11}-\frac{64\cdots 38}{42\cdots 71}a^{10}+\frac{10\cdots 90}{42\cdots 71}a^{9}-\frac{35\cdots 79}{42\cdots 71}a^{8}+\frac{88\cdots 49}{42\cdots 71}a^{7}-\frac{17\cdots 76}{42\cdots 71}a^{6}+\frac{28\cdots 12}{42\cdots 71}a^{5}-\frac{37\cdots 76}{42\cdots 71}a^{4}+\frac{40\cdots 05}{42\cdots 71}a^{3}-\frac{34\cdots 69}{42\cdots 71}a^{2}+\frac{18\cdots 94}{42\cdots 71}a-\frac{57\cdots 46}{42\cdots 71}$, $\frac{68\cdots 50}{42\cdots 71}a^{15}-\frac{40\cdots 54}{42\cdots 71}a^{14}-\frac{60\cdots 66}{42\cdots 71}a^{13}+\frac{11\cdots 87}{42\cdots 71}a^{12}-\frac{29\cdots 64}{42\cdots 71}a^{11}-\frac{17\cdots 32}{42\cdots 71}a^{10}+\frac{31\cdots 31}{42\cdots 71}a^{9}-\frac{11\cdots 56}{42\cdots 71}a^{8}+\frac{27\cdots 36}{42\cdots 71}a^{7}-\frac{54\cdots 93}{42\cdots 71}a^{6}+\frac{87\cdots 50}{42\cdots 71}a^{5}-\frac{11\cdots 37}{42\cdots 71}a^{4}+\frac{12\cdots 67}{42\cdots 71}a^{3}-\frac{10\cdots 68}{42\cdots 71}a^{2}+\frac{56\cdots 45}{42\cdots 71}a-\frac{17\cdots 01}{42\cdots 71}$, $\frac{65\cdots 28}{15\cdots 83}a^{15}-\frac{34\cdots 98}{15\cdots 83}a^{14}-\frac{73\cdots 97}{15\cdots 83}a^{13}+\frac{98\cdots 05}{15\cdots 83}a^{12}-\frac{22\cdots 58}{15\cdots 83}a^{11}-\frac{20\cdots 14}{15\cdots 83}a^{10}+\frac{26\cdots 47}{15\cdots 83}a^{9}-\frac{92\cdots 30}{15\cdots 83}a^{8}+\frac{22\cdots 79}{15\cdots 83}a^{7}-\frac{44\cdots 03}{15\cdots 83}a^{6}+\frac{71\cdots 85}{15\cdots 83}a^{5}-\frac{92\cdots 95}{15\cdots 83}a^{4}+\frac{97\cdots 87}{15\cdots 83}a^{3}-\frac{77\cdots 25}{15\cdots 83}a^{2}+\frac{41\cdots 03}{15\cdots 83}a-\frac{10\cdots 71}{15\cdots 83}$, $\frac{64\cdots 05}{15\cdots 83}a^{15}-\frac{40\cdots 72}{15\cdots 83}a^{14}-\frac{42\cdots 25}{15\cdots 83}a^{13}+\frac{10\cdots 56}{15\cdots 83}a^{12}-\frac{31\cdots 09}{15\cdots 83}a^{11}-\frac{83\cdots 77}{15\cdots 83}a^{10}+\frac{31\cdots 30}{15\cdots 83}a^{9}-\frac{19\cdots 77}{26\cdots 37}a^{8}+\frac{28\cdots 04}{15\cdots 83}a^{7}-\frac{55\cdots 03}{15\cdots 83}a^{6}+\frac{89\cdots 82}{15\cdots 83}a^{5}-\frac{11\cdots 84}{15\cdots 83}a^{4}+\frac{12\cdots 08}{15\cdots 83}a^{3}-\frac{92\cdots 56}{15\cdots 83}a^{2}+\frac{47\cdots 05}{15\cdots 83}a-\frac{13\cdots 42}{15\cdots 83}$, $\frac{31\cdots 72}{15\cdots 83}a^{15}-\frac{18\cdots 24}{15\cdots 83}a^{14}-\frac{28\cdots 22}{15\cdots 83}a^{13}+\frac{50\cdots 43}{15\cdots 83}a^{12}-\frac{13\cdots 08}{15\cdots 83}a^{11}-\frac{80\cdots 62}{15\cdots 83}a^{10}+\frac{14\cdots 61}{15\cdots 83}a^{9}-\frac{49\cdots 79}{15\cdots 83}a^{8}+\frac{12\cdots 14}{15\cdots 83}a^{7}-\frac{24\cdots 63}{15\cdots 83}a^{6}+\frac{39\cdots 46}{15\cdots 83}a^{5}-\frac{51\cdots 64}{15\cdots 83}a^{4}+\frac{94\cdots 61}{26\cdots 37}a^{3}-\frac{45\cdots 68}{15\cdots 83}a^{2}+\frac{24\cdots 65}{15\cdots 83}a-\frac{66\cdots 65}{15\cdots 83}$, $\frac{49\cdots 32}{15\cdots 83}a^{15}-\frac{25\cdots 18}{15\cdots 83}a^{14}-\frac{58\cdots 32}{15\cdots 83}a^{13}+\frac{73\cdots 17}{15\cdots 83}a^{12}-\frac{16\cdots 70}{15\cdots 83}a^{11}-\frac{17\cdots 58}{15\cdots 83}a^{10}+\frac{20\cdots 29}{15\cdots 83}a^{9}-\frac{67\cdots 30}{15\cdots 83}a^{8}+\frac{16\cdots 36}{15\cdots 83}a^{7}-\frac{32\cdots 23}{15\cdots 83}a^{6}+\frac{51\cdots 52}{15\cdots 83}a^{5}-\frac{66\cdots 96}{15\cdots 83}a^{4}+\frac{71\cdots 89}{15\cdots 83}a^{3}-\frac{57\cdots 55}{15\cdots 83}a^{2}+\frac{30\cdots 49}{15\cdots 83}a-\frac{95\cdots 88}{15\cdots 83}$, $\frac{22\cdots 50}{42\cdots 71}a^{15}-\frac{24\cdots 29}{42\cdots 71}a^{14}+\frac{38\cdots 41}{42\cdots 71}a^{13}+\frac{53\cdots 85}{42\cdots 71}a^{12}-\frac{28\cdots 79}{42\cdots 71}a^{11}+\frac{25\cdots 66}{42\cdots 71}a^{10}+\frac{19\cdots 14}{42\cdots 71}a^{9}-\frac{90\cdots 76}{42\cdots 71}a^{8}+\frac{21\cdots 39}{42\cdots 71}a^{7}-\frac{40\cdots 52}{42\cdots 71}a^{6}+\frac{65\cdots 42}{42\cdots 71}a^{5}-\frac{82\cdots 88}{42\cdots 71}a^{4}+\frac{72\cdots 55}{42\cdots 71}a^{3}-\frac{40\cdots 74}{42\cdots 71}a^{2}+\frac{12\cdots 10}{42\cdots 71}a-\frac{13\cdots 66}{42\cdots 71}$
|
| |
| Regulator: | \( 645179.367444 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 645179.367444 \cdot 54}{2\cdot\sqrt{14816104373013890157094140625}}\cr\approx \mathstrut & 0.347629134405 \end{aligned}\] (assuming GRH)
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.8405.1, 4.4.68921.1, 4.0.344605.1, 8.8.4868856847025.1, 8.0.121721421175625.1, 8.0.118752606025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | 16.0.23705766996822224251350625.1 |
| Minimal sibling: | 16.0.23705766996822224251350625.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{4}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{8}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.2.2.2a1.1 | $x^{4} + 8 x^{3} + 20 x^{2} + 21 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 5.2.2.2a1.1 | $x^{4} + 8 x^{3} + 20 x^{2} + 21 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(41\)
| 41.2.8.14a1.2 | $x^{16} + 304 x^{15} + 40480 x^{14} + 3085600 x^{13} + 147416080 x^{12} + 4529584192 x^{11} + 87831092608 x^{10} + 996302227840 x^{9} + 5391168776800 x^{8} + 5977813367040 x^{7} + 3161919333888 x^{6} + 978390185472 x^{5} + 191051239680 x^{4} + 23993625600 x^{3} + 1888634880 x^{2} + 85100544 x + 1679657$ | $8$ | $2$ | $14$ | $C_8\times C_2$ | $$[\ ]_{8}^{2}$$ |