Normalized defining polynomial
\( x^{16} - 6 x^{15} - 8 x^{14} + 160 x^{13} - 441 x^{12} - 134 x^{11} + 4342 x^{10} - 16579 x^{9} + 43548 x^{8} - 89962 x^{7} + 151269 x^{6} - 210738 x^{5} + 244446 x^{4} - 223845 x^{3} + 154504 x^{2} - 70325 x + 18419 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14816104373013890157094140625=5^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{118} a^{14} - \frac{1}{118} a^{13} + \frac{15}{118} a^{12} - \frac{29}{118} a^{11} + \frac{11}{118} a^{10} + \frac{53}{118} a^{9} - \frac{41}{118} a^{8} - \frac{19}{118} a^{7} - \frac{57}{118} a^{6} - \frac{37}{118} a^{5} + \frac{41}{118} a^{4} + \frac{5}{118} a^{3} - \frac{57}{118} a^{2} + \frac{33}{118} a + \frac{27}{118}$, $\frac{1}{31483304674590496943003883029366} a^{15} + \frac{31931026479879894439667697010}{15741652337295248471501941514683} a^{14} + \frac{2157088679110066712125078096882}{15741652337295248471501941514683} a^{13} + \frac{3184112874432841018839849979641}{15741652337295248471501941514683} a^{12} + \frac{4014361578900052439451301113507}{15741652337295248471501941514683} a^{11} - \frac{6854792361587431176397190068751}{15741652337295248471501941514683} a^{10} - \frac{4129264753035362642321199591721}{15741652337295248471501941514683} a^{9} + \frac{703379679805432398563934017377}{15741652337295248471501941514683} a^{8} - \frac{3281431170124349551830660521436}{15741652337295248471501941514683} a^{7} - \frac{1508809416509151386937829772258}{15741652337295248471501941514683} a^{6} - \frac{2291192466140734266712135117753}{15741652337295248471501941514683} a^{5} - \frac{7213099851565010295879036533467}{15741652337295248471501941514683} a^{4} + \frac{4042141206180289241168920952208}{15741652337295248471501941514683} a^{3} + \frac{3735454260999111702451150015873}{15741652337295248471501941514683} a^{2} + \frac{3919056217585378373499113243469}{15741652337295248471501941514683} a + \frac{8389940394755155296363790383649}{31483304674590496943003883029366}$
Class group and class number
$C_{3}\times C_{3}\times C_{6}$, which has order $54$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 645179.367444 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.8405.1, 4.4.68921.1, 4.0.344605.1, 8.8.4868856847025.1, 8.0.121721421175625.1, 8.0.118752606025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||