Normalized defining polynomial
\( x^{16} - 5 x^{15} + 27 x^{14} - 99 x^{13} + 347 x^{12} - 1044 x^{11} + 2589 x^{10} - 5723 x^{9} + 11360 x^{8} - 20192 x^{7} + 32032 x^{6} - 44891 x^{5} + 52463 x^{4} - 53128 x^{3} + 54312 x^{2} - 46472 x + 21904 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23705766996822224251350625=5^{4}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{236} a^{13} - \frac{23}{236} a^{12} + \frac{7}{59} a^{11} + \frac{3}{118} a^{10} - \frac{21}{236} a^{9} - \frac{75}{236} a^{8} + \frac{41}{236} a^{7} + \frac{43}{236} a^{6} - \frac{43}{236} a^{5} - \frac{27}{118} a^{4} + \frac{73}{236} a^{3} + \frac{1}{236} a^{2} - \frac{22}{59} a + \frac{13}{59}$, $\frac{1}{236} a^{14} - \frac{29}{236} a^{12} + \frac{1}{236} a^{11} - \frac{1}{236} a^{10} + \frac{8}{59} a^{9} + \frac{27}{236} a^{8} - \frac{17}{236} a^{7} - \frac{57}{236} a^{6} + \frac{19}{236} a^{5} + \frac{11}{236} a^{4} - \frac{31}{236} a^{3} + \frac{28}{59} a^{2} + \frac{17}{118} a + \frac{4}{59}$, $\frac{1}{12552512468697992302648072} a^{15} - \frac{26124034610302239881453}{12552512468697992302648072} a^{14} + \frac{23846774496839795439181}{12552512468697992302648072} a^{13} + \frac{588683959971492096687679}{12552512468697992302648072} a^{12} - \frac{1260649245992608347274421}{12552512468697992302648072} a^{11} + \frac{64847578240012285784889}{1569064058587249037831009} a^{10} + \frac{622782002725050519370407}{12552512468697992302648072} a^{9} - \frac{607098880777789572202725}{12552512468697992302648072} a^{8} - \frac{1106342197833429483116841}{6276256234348996151324036} a^{7} - \frac{921528737797235735765605}{6276256234348996151324036} a^{6} - \frac{2219452450061124689431981}{6276256234348996151324036} a^{5} - \frac{535261598480967804680495}{12552512468697992302648072} a^{4} + \frac{3382531466489498384429737}{12552512468697992302648072} a^{3} - \frac{2887322447355385113829099}{6276256234348996151324036} a^{2} + \frac{1250648956612332013296221}{3138128117174498075662018} a + \frac{870858816923374359642}{42407136718574298319757}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 322589.683722 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.8405.1, 4.4.68921.1, 4.0.344605.1, 8.8.4868856847025.1, 8.0.194754273881.1, 8.0.118752606025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||