Normalized defining polynomial
\( x^{16} - 8 x^{15} + 60 x^{14} - 280 x^{13} + 1366 x^{12} - 4920 x^{11} + 18684 x^{10} - 54040 x^{9} + 169095 x^{8} - 396536 x^{7} + 1046676 x^{6} - 1935192 x^{5} + 4326842 x^{4} - 5804824 x^{3} + 11026220 x^{2} - 8393144 x + 13286974 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(144621385476274636765576298496=2^{48}\cdot 3^{8}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1104=2^{4}\cdot 3\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1104}(1,·)$, $\chi_{1104}(323,·)$, $\chi_{1104}(781,·)$, $\chi_{1104}(1103,·)$, $\chi_{1104}(275,·)$, $\chi_{1104}(277,·)$, $\chi_{1104}(599,·)$, $\chi_{1104}(1057,·)$, $\chi_{1104}(229,·)$, $\chi_{1104}(551,·)$, $\chi_{1104}(553,·)$, $\chi_{1104}(875,·)$, $\chi_{1104}(47,·)$, $\chi_{1104}(505,·)$, $\chi_{1104}(827,·)$, $\chi_{1104}(829,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{132864432006262313} a^{14} - \frac{1}{18980633143751759} a^{13} + \frac{41426465276959752}{132864432006262313} a^{12} + \frac{17170072350766205}{132864432006262313} a^{11} + \frac{59569301734124680}{132864432006262313} a^{10} - \frac{12357398531772736}{132864432006262313} a^{9} - \frac{33061884461306863}{132864432006262313} a^{8} - \frac{475795874927790}{18980633143751759} a^{7} + \frac{40278531490282985}{132864432006262313} a^{6} - \frac{17789385211336364}{132864432006262313} a^{5} - \frac{24699961133605624}{132864432006262313} a^{4} - \frac{4983221709105482}{132864432006262313} a^{3} + \frac{44398786038302834}{132864432006262313} a^{2} + \frac{26243697287447462}{132864432006262313} a + \frac{55870986316631942}{132864432006262313}$, $\frac{1}{114565412379335823417449} a^{15} + \frac{431129}{114565412379335823417449} a^{14} + \frac{45656246196777192557990}{114565412379335823417449} a^{13} - \frac{7110616324785738041498}{16366487482762260488207} a^{12} + \frac{18046996988071371627242}{114565412379335823417449} a^{11} - \frac{33554085979490955888802}{114565412379335823417449} a^{10} + \frac{7457240931626380320237}{16366487482762260488207} a^{9} - \frac{1211691337292201769189}{2437561965517783476967} a^{8} - \frac{6380970128639660430642}{114565412379335823417449} a^{7} - \frac{2831778595535907164318}{16366487482762260488207} a^{6} + \frac{39784324317352805738265}{114565412379335823417449} a^{5} + \frac{37172980449926097166057}{114565412379335823417449} a^{4} - \frac{48388811553834316791169}{114565412379335823417449} a^{3} + \frac{32549689688154966878655}{114565412379335823417449} a^{2} - \frac{1080397181588951833309}{114565412379335823417449} a - \frac{37924885709131430498882}{114565412379335823417449}$
Class group and class number
$C_{4}\times C_{40}\times C_{120}$, which has order $19200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |