Normalized defining polynomial
\( x^{16} - 2 x^{15} - 49 x^{14} + 160 x^{13} + 7474 x^{12} - 11638 x^{11} - 276102 x^{10} + \cdots + 34103781328 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(143902101499474565788603458614754288481\)
\(\medspace = 17^{12}\cdot 89^{12}\)
|
| |
Root discriminant: | \(242.59\) |
| |
Galois root discriminant: | $17^{3/4}89^{3/4}\approx 242.5935199570227$ | ||
Ramified primes: |
\(17\), \(89\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.1514445171352129.1 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{7}-\frac{1}{4}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{3}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{7}-\frac{1}{8}a^{4}-\frac{1}{2}a^{3}+\frac{1}{8}a-\frac{1}{2}$, $\frac{1}{16}a^{11}-\frac{1}{16}a^{10}-\frac{1}{16}a^{8}+\frac{1}{16}a^{7}-\frac{1}{4}a^{6}+\frac{3}{16}a^{5}-\frac{3}{16}a^{4}-\frac{3}{16}a^{2}+\frac{3}{16}a+\frac{1}{4}$, $\frac{1}{16}a^{12}-\frac{1}{16}a^{10}-\frac{1}{16}a^{9}+\frac{1}{16}a^{7}-\frac{1}{16}a^{6}-\frac{3}{16}a^{4}-\frac{3}{16}a^{3}+\frac{3}{16}a+\frac{1}{4}$, $\frac{1}{32}a^{13}-\frac{1}{8}a^{9}+\frac{1}{16}a^{7}+\frac{1}{8}a^{6}-\frac{3}{8}a^{3}-\frac{3}{32}a+\frac{3}{8}$, $\frac{1}{160}a^{14}+\frac{1}{160}a^{13}-\frac{1}{40}a^{11}-\frac{1}{20}a^{10}+\frac{1}{40}a^{9}-\frac{9}{80}a^{8}+\frac{1}{16}a^{7}+\frac{9}{40}a^{6}-\frac{7}{40}a^{5}-\frac{1}{4}a^{4}-\frac{1}{40}a^{3}-\frac{79}{160}a^{2}-\frac{59}{160}a-\frac{17}{40}$, $\frac{1}{21\cdots 20}a^{15}-\frac{15\cdots 19}{21\cdots 20}a^{14}-\frac{33\cdots 79}{21\cdots 72}a^{13}-\frac{69\cdots 97}{10\cdots 60}a^{12}+\frac{65\cdots 73}{54\cdots 80}a^{11}-\frac{59\cdots 13}{10\cdots 60}a^{10}-\frac{52\cdots 87}{54\cdots 80}a^{9}+\frac{22\cdots 75}{21\cdots 72}a^{8}+\frac{11\cdots 23}{10\cdots 60}a^{7}+\frac{37\cdots 81}{10\cdots 60}a^{6}+\frac{25\cdots 03}{10\cdots 36}a^{5}+\frac{24\cdots 53}{10\cdots 60}a^{4}+\frac{60\cdots 11}{21\cdots 20}a^{3}-\frac{76\cdots 79}{21\cdots 20}a^{2}+\frac{58\cdots 27}{13\cdots 20}a-\frac{68\cdots 77}{27\cdots 84}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | $C_{4}\times C_{28}$, which has order $112$ (assuming GRH) |
| |
Narrow class group: | $C_{4}\times C_{28}$, which has order $112$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{25\cdots 13}{58\cdots 44}a^{15}+\frac{38\cdots 41}{58\cdots 44}a^{14}-\frac{51\cdots 83}{14\cdots 36}a^{13}-\frac{20\cdots 63}{73\cdots 18}a^{12}+\frac{10\cdots 04}{36\cdots 09}a^{11}+\frac{73\cdots 19}{14\cdots 36}a^{10}+\frac{14\cdots 33}{29\cdots 72}a^{9}-\frac{50\cdots 51}{29\cdots 72}a^{8}-\frac{14\cdots 03}{14\cdots 36}a^{7}-\frac{14\cdots 29}{73\cdots 18}a^{6}+\frac{19\cdots 60}{36\cdots 09}a^{5}+\frac{27\cdots 57}{14\cdots 36}a^{4}+\frac{83\cdots 65}{58\cdots 44}a^{3}+\frac{52\cdots 65}{58\cdots 44}a^{2}-\frac{98\cdots 71}{73\cdots 18}a+\frac{30\cdots 52}{36\cdots 09}$, $\frac{72\cdots 97}{27\cdots 20}a^{15}+\frac{43\cdots 33}{55\cdots 44}a^{14}-\frac{21\cdots 41}{13\cdots 60}a^{13}-\frac{26\cdots 09}{13\cdots 60}a^{12}+\frac{14\cdots 93}{68\cdots 80}a^{11}+\frac{39\cdots 67}{13\cdots 60}a^{10}-\frac{63\cdots 21}{68\cdots 80}a^{9}-\frac{63\cdots 77}{13\cdots 60}a^{8}+\frac{10\cdots 51}{13\cdots 60}a^{7}+\frac{17\cdots 81}{13\cdots 60}a^{6}-\frac{33\cdots 61}{68\cdots 80}a^{5}+\frac{87\cdots 61}{13\cdots 60}a^{4}+\frac{32\cdots 59}{55\cdots 44}a^{3}-\frac{19\cdots 71}{55\cdots 44}a^{2}+\frac{20\cdots 13}{68\cdots 80}a-\frac{68\cdots 97}{86\cdots 60}$, $\frac{52\cdots 43}{43\cdots 80}a^{15}+\frac{55\cdots 81}{43\cdots 80}a^{14}+\frac{39\cdots 19}{21\cdots 40}a^{13}-\frac{12\cdots 71}{21\cdots 40}a^{12}+\frac{94\cdots 41}{10\cdots 20}a^{11}+\frac{20\cdots 29}{21\cdots 40}a^{10}+\frac{23\cdots 57}{10\cdots 20}a^{9}-\frac{65\cdots 97}{21\cdots 40}a^{8}-\frac{41\cdots 11}{21\cdots 40}a^{7}-\frac{84\cdots 73}{21\cdots 40}a^{6}+\frac{28\cdots 39}{10\cdots 20}a^{5}+\frac{10\cdots 99}{21\cdots 40}a^{4}+\frac{15\cdots 21}{43\cdots 80}a^{3}+\frac{11\cdots 41}{43\cdots 80}a^{2}-\frac{20\cdots 47}{53\cdots 60}a+\frac{12\cdots 01}{26\cdots 80}$, $\frac{36\cdots 69}{21\cdots 20}a^{15}-\frac{40\cdots 31}{21\cdots 20}a^{14}-\frac{18\cdots 47}{21\cdots 72}a^{13}+\frac{21\cdots 87}{10\cdots 60}a^{12}+\frac{69\cdots 57}{54\cdots 80}a^{11}-\frac{88\cdots 97}{10\cdots 60}a^{10}-\frac{25\cdots 03}{54\cdots 80}a^{9}-\frac{16\cdots 41}{21\cdots 72}a^{8}+\frac{47\cdots 07}{10\cdots 60}a^{7}+\frac{19\cdots 89}{10\cdots 60}a^{6}-\frac{27\cdots 53}{10\cdots 36}a^{5}+\frac{78\cdots 17}{10\cdots 60}a^{4}+\frac{99\cdots 79}{21\cdots 20}a^{3}-\frac{42\cdots 71}{21\cdots 20}a^{2}+\frac{19\cdots 56}{17\cdots 65}a-\frac{11\cdots 09}{27\cdots 84}$, $\frac{20\cdots 71}{10\cdots 36}a^{15}-\frac{25\cdots 93}{54\cdots 80}a^{14}-\frac{10\cdots 43}{54\cdots 80}a^{13}+\frac{23\cdots 45}{27\cdots 84}a^{12}+\frac{51\cdots 51}{27\cdots 40}a^{11}-\frac{14\cdots 43}{27\cdots 40}a^{10}-\frac{28\cdots 01}{27\cdots 40}a^{9}+\frac{13\cdots 19}{34\cdots 30}a^{8}+\frac{44\cdots 24}{34\cdots 73}a^{7}-\frac{11\cdots 61}{68\cdots 60}a^{6}+\frac{13\cdots 37}{27\cdots 40}a^{5}+\frac{49\cdots 27}{54\cdots 68}a^{4}-\frac{49\cdots 93}{54\cdots 80}a^{3}+\frac{22\cdots 97}{54\cdots 80}a^{2}-\frac{24\cdots 53}{54\cdots 80}a+\frac{22\cdots 21}{13\cdots 20}$, $\frac{13\cdots 71}{54\cdots 80}a^{15}+\frac{24\cdots 47}{17\cdots 65}a^{14}-\frac{22\cdots 37}{54\cdots 80}a^{13}-\frac{17\cdots 62}{17\cdots 65}a^{12}+\frac{49\cdots 23}{27\cdots 84}a^{11}+\frac{31\cdots 03}{27\cdots 84}a^{10}-\frac{58\cdots 63}{27\cdots 40}a^{9}-\frac{27\cdots 21}{13\cdots 20}a^{8}-\frac{20\cdots 87}{27\cdots 40}a^{7}-\frac{29\cdots 93}{27\cdots 84}a^{6}-\frac{53\cdots 11}{13\cdots 20}a^{5}-\frac{21\cdots 31}{13\cdots 20}a^{4}-\frac{91\cdots 61}{54\cdots 80}a^{3}-\frac{39\cdots 79}{13\cdots 20}a^{2}-\frac{23\cdots 53}{10\cdots 36}a-\frac{30\cdots 31}{13\cdots 20}$, $\frac{21\cdots 61}{21\cdots 20}a^{15}-\frac{36\cdots 47}{21\cdots 20}a^{14}-\frac{71\cdots 79}{10\cdots 60}a^{13}+\frac{90\cdots 23}{10\cdots 60}a^{12}+\frac{45\cdots 61}{54\cdots 80}a^{11}-\frac{67\cdots 81}{10\cdots 60}a^{10}-\frac{43\cdots 99}{10\cdots 36}a^{9}-\frac{90\cdots 93}{10\cdots 60}a^{8}+\frac{74\cdots 83}{10\cdots 60}a^{7}+\frac{49\cdots 97}{10\cdots 60}a^{6}-\frac{46\cdots 69}{54\cdots 80}a^{5}+\frac{48\cdots 93}{10\cdots 60}a^{4}+\frac{29\cdots 43}{21\cdots 20}a^{3}-\frac{41\cdots 67}{21\cdots 20}a^{2}+\frac{62\cdots 33}{27\cdots 40}a-\frac{12\cdots 31}{13\cdots 20}$
|
| |
Regulator: | \( 207783740805 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 207783740805 \cdot 112}{2\cdot\sqrt{143902101499474565788603458614754288481}}\cr\approx \mathstrut & 2.35616101830918 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3.D_4$ (as 16T153):
A solvable group of order 64 |
The 13 conjugacy class representatives for $C_2^3.D_4$ |
Character table for $C_2^3.D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.4.38915873.1, 4.0.437257.1, 4.0.25721.1, 8.0.1514445171352129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.8.143902101499474565788603458614754288481.3 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{8}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\)
| 17.1.4.3a1.1 | $x^{4} + 17$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
17.1.4.3a1.1 | $x^{4} + 17$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
17.1.4.3a1.1 | $x^{4} + 17$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
17.1.4.3a1.1 | $x^{4} + 17$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
\(89\)
| 89.2.4.6a1.2 | $x^{8} + 328 x^{7} + 40356 x^{6} + 2208424 x^{5} + 45454294 x^{4} + 6625272 x^{3} + 363204 x^{2} + 8856 x + 170$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
89.2.4.6a1.2 | $x^{8} + 328 x^{7} + 40356 x^{6} + 2208424 x^{5} + 45454294 x^{4} + 6625272 x^{3} + 363204 x^{2} + 8856 x + 170$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |