Properties

Label 89.2.4.6a1.2
Base \(\Q_{89}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 82 x + 3 )^{4} + 89$ Copy content Toggle raw display

Invariants

Base field: $\Q_{89}$
Degree $d$: $8$
Ramification index $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{89}$
Root number: $-1$
$\Aut(K/\Q_{89})$ $=$$\Gal(K/\Q_{89})$: $C_2\times C_4$
This field is Galois and abelian over $\Q_{89}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$7920 = (89^{ 2 } - 1)$

Intermediate fields

$\Q_{89}(\sqrt{3})$, $\Q_{89}(\sqrt{89})$, $\Q_{89}(\sqrt{89\cdot 3})$, 89.2.2.2a1.2, 89.1.4.3a1.1, 89.1.4.3a1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{89}(\sqrt{3})$ $\cong \Q_{89}(t)$ where $t$ is a root of \( x^{2} + 82 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 89 \) $\ \in\Q_{89}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 4 z^2 + 6 z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $8$
Galois group: $C_2\times C_4$ (as 8T2)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $4$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.75$
Galois splitting model:not computed