Normalized defining polynomial
\( x^{16} - 6 x^{15} + 16 x^{14} - 20 x^{13} + 4 x^{12} - 8 x^{11} + 104 x^{10} - 196 x^{9} + 44 x^{8} + \cdots + 2 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(11979351654400000000\)
\(\medspace = 2^{30}\cdot 5^{8}\cdot 13^{4}\)
|
| |
| Root discriminant: | \(15.57\) |
| |
| Galois root discriminant: | $2^{15/8}5^{3/4}13^{1/2}\approx 44.221189586044886$ | ||
| Ramified primes: |
\(2\), \(5\), \(13\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-1}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13}a^{14}-\frac{4}{13}a^{13}-\frac{1}{13}a^{12}+\frac{1}{13}a^{11}+\frac{2}{13}a^{10}-\frac{5}{13}a^{8}+\frac{2}{13}a^{7}+\frac{2}{13}a^{6}-\frac{2}{13}a^{5}+\frac{3}{13}a^{3}+\frac{5}{13}a^{2}-\frac{5}{13}a+\frac{6}{13}$, $\frac{1}{46066007}a^{15}+\frac{181820}{46066007}a^{14}+\frac{27155}{648817}a^{13}+\frac{20385074}{46066007}a^{12}+\frac{1758206}{46066007}a^{11}+\frac{7193263}{46066007}a^{10}+\frac{5536981}{46066007}a^{9}-\frac{77125}{648817}a^{8}+\frac{17771131}{46066007}a^{7}-\frac{10960147}{46066007}a^{6}+\frac{11209472}{46066007}a^{5}-\frac{6393202}{46066007}a^{4}-\frac{20726046}{46066007}a^{3}-\frac{5118361}{46066007}a^{2}+\frac{16888692}{46066007}a+\frac{762512}{46066007}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( \frac{379421}{3543539} a^{15} - \frac{2834571}{3543539} a^{14} + \frac{113022}{49909} a^{13} - \frac{10566231}{3543539} a^{12} + \frac{713664}{3543539} a^{11} + \frac{2323994}{3543539} a^{10} + \frac{49141234}{3543539} a^{9} - \frac{1497379}{49909} a^{8} + \frac{19871632}{3543539} a^{7} + \frac{169717818}{3543539} a^{6} - \frac{186611832}{3543539} a^{5} + \frac{352252}{3543539} a^{4} + \frac{108913462}{3543539} a^{3} - \frac{51514350}{3543539} a^{2} + \frac{1092072}{3543539} a + \frac{823897}{3543539} \)
(order $4$)
|
| |
| Fundamental units: |
$\frac{3832719}{46066007}a^{15}-\frac{25128855}{46066007}a^{14}+\frac{949111}{648817}a^{13}-\frac{79324619}{46066007}a^{12}-\frac{13769413}{46066007}a^{11}+\frac{26617638}{46066007}a^{10}+\frac{418770642}{46066007}a^{9}-\frac{12100921}{648817}a^{8}+\frac{20510135}{46066007}a^{7}+\frac{1664828718}{46066007}a^{6}-\frac{1619347244}{46066007}a^{5}-\frac{330926861}{46066007}a^{4}+\frac{1266643438}{46066007}a^{3}-\frac{416618360}{46066007}a^{2}-\frac{159502828}{46066007}a-\frac{581193}{46066007}$, $\frac{6915611}{46066007}a^{15}-\frac{28422130}{46066007}a^{14}+\frac{872314}{648817}a^{13}-\frac{45418731}{46066007}a^{12}-\frac{14814855}{46066007}a^{11}-\frac{103282644}{46066007}a^{10}+\frac{482173830}{46066007}a^{9}-\frac{7930886}{648817}a^{8}-\frac{271771261}{46066007}a^{7}+\frac{1110918862}{46066007}a^{6}-\frac{666188227}{46066007}a^{5}-\frac{495066088}{46066007}a^{4}+\frac{581089083}{46066007}a^{3}+\frac{30049769}{46066007}a^{2}-\frac{186673612}{46066007}a-\frac{28034933}{46066007}$, $a-1$, $\frac{12250508}{46066007}a^{15}-\frac{52902528}{46066007}a^{14}+\frac{1691408}{648817}a^{13}-\frac{124677372}{46066007}a^{12}+\frac{53475076}{46066007}a^{11}-\frac{264566189}{46066007}a^{10}+\frac{845897184}{46066007}a^{9}-\frac{14960733}{648817}a^{8}+\frac{222167741}{46066007}a^{7}+\frac{1108704976}{46066007}a^{6}-\frac{1802316109}{46066007}a^{5}+\frac{1176458742}{46066007}a^{4}+\frac{242651115}{46066007}a^{3}-\frac{889620584}{46066007}a^{2}+\frac{464679766}{46066007}a-\frac{31129045}{46066007}$, $\frac{1973466}{3543539}a^{15}-\frac{136898813}{46066007}a^{14}+\frac{4480497}{648817}a^{13}-\frac{300354133}{46066007}a^{12}-\frac{85437858}{46066007}a^{11}-\frac{306605349}{46066007}a^{10}+\frac{193972824}{3543539}a^{9}-\frac{46865172}{648817}a^{8}-\frac{1087294271}{46066007}a^{7}+\frac{5903835732}{46066007}a^{6}-\frac{3602535510}{46066007}a^{5}-\frac{144997270}{3543539}a^{4}+\frac{2506332273}{46066007}a^{3}-\frac{252424063}{46066007}a^{2}-\frac{256085705}{46066007}a-\frac{76142151}{46066007}$, $\frac{1793567}{46066007}a^{15}-\frac{9085769}{46066007}a^{14}+\frac{364690}{648817}a^{13}-\frac{26770702}{46066007}a^{12}-\frac{2422539}{46066007}a^{11}+\frac{2408340}{46066007}a^{10}+\frac{174810188}{46066007}a^{9}-\frac{5262831}{648817}a^{8}-\frac{29401433}{46066007}a^{7}+\frac{651834554}{46066007}a^{6}-\frac{357076186}{46066007}a^{5}-\frac{530593192}{46066007}a^{4}+\frac{429198261}{46066007}a^{3}+\frac{208148549}{46066007}a^{2}-\frac{184179790}{46066007}a-\frac{30234441}{46066007}$, $\frac{24244274}{46066007}a^{15}-\frac{114683327}{46066007}a^{14}+\frac{3342016}{648817}a^{13}-\frac{171725425}{46066007}a^{12}-\frac{120815064}{46066007}a^{11}-\frac{403268717}{46066007}a^{10}+\frac{2081722542}{46066007}a^{9}-\frac{27844561}{648817}a^{8}-\frac{1602512564}{46066007}a^{7}+\frac{4062247867}{46066007}a^{6}-\frac{1606440972}{46066007}a^{5}-\frac{1491054637}{46066007}a^{4}+\frac{1405653138}{46066007}a^{3}-\frac{250369374}{46066007}a^{2}-\frac{54982580}{46066007}a+\frac{38004231}{46066007}$
|
| |
| Regulator: | \( 2844.26103233 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2844.26103233 \cdot 1}{4\cdot\sqrt{11979351654400000000}}\cr\approx \mathstrut & 0.499035854716 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1276):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.320.1, 8.0.26624000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.194664464384000000000.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.30a1.1 | $x^{16} + 2 x^{15} + 2$ | $16$ | $1$ | $30$ | 16T166 | $$[2, 2, 2, 2]^{4}$$ |
|
\(5\)
| 5.4.1.0a1.1 | $x^{4} + 4 x^{2} + 4 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 5.2.2.2a1.1 | $x^{4} + 8 x^{3} + 20 x^{2} + 21 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 5.2.4.6a1.3 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 133 x + 31$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |