Normalized defining polynomial
\( x^{16} - 8 x^{15} + 180 x^{14} - 1120 x^{13} + 14026 x^{12} - 69960 x^{11} + 627024 x^{10} - 2519560 x^{9} + 17702027 x^{8} - 56416264 x^{7} + 324191712 x^{6} - 784977032 x^{5} + 3766659562 x^{4} - 6286165360 x^{3} + 25396479484 x^{2} - 22375524712 x + 76059908671 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10386864596368228067918124169560064=2^{62}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2656=2^{5}\cdot 83\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2656}(1,·)$, $\chi_{2656}(1161,·)$, $\chi_{2656}(333,·)$, $\chi_{2656}(1493,·)$, $\chi_{2656}(665,·)$, $\chi_{2656}(165,·)$, $\chi_{2656}(1825,·)$, $\chi_{2656}(997,·)$, $\chi_{2656}(497,·)$, $\chi_{2656}(2157,·)$, $\chi_{2656}(829,·)$, $\chi_{2656}(1329,·)$, $\chi_{2656}(1993,·)$, $\chi_{2656}(2489,·)$, $\chi_{2656}(1661,·)$, $\chi_{2656}(2325,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{185727418680232864457521} a^{14} - \frac{7}{185727418680232864457521} a^{13} + \frac{73081017134257273656763}{185727418680232864457521} a^{12} - \frac{67031265445077913025445}{185727418680232864457521} a^{11} - \frac{48250134454982005315301}{185727418680232864457521} a^{10} - \frac{11024014986295804825514}{185727418680232864457521} a^{9} + \frac{6971178574563580355072}{185727418680232864457521} a^{8} + \frac{43825130444594922083271}{185727418680232864457521} a^{7} + \frac{57117857195318148097491}{185727418680232864457521} a^{6} - \frac{79444276021180883269536}{185727418680232864457521} a^{5} - \frac{52000710089310371696378}{185727418680232864457521} a^{4} + \frac{2823075317357000769538}{185727418680232864457521} a^{3} + \frac{61143593469905268938919}{185727418680232864457521} a^{2} + \frac{12788548860850784231126}{185727418680232864457521} a + \frac{2375502578885176437807}{5991207054201060143791}$, $\frac{1}{12637913024804179895882736172769} a^{15} + \frac{34022737}{12637913024804179895882736172769} a^{14} + \frac{4895427147764186045435024578243}{12637913024804179895882736172769} a^{13} - \frac{4058033637099892084673107201749}{12637913024804179895882736172769} a^{12} - \frac{3034996434605165745301092991575}{12637913024804179895882736172769} a^{11} + \frac{4988079379077661796043269779502}{12637913024804179895882736172769} a^{10} - \frac{910512880355184641369624165109}{12637913024804179895882736172769} a^{9} + \frac{6074032954617539520415427105192}{12637913024804179895882736172769} a^{8} + \frac{4717640577690859420678501495109}{12637913024804179895882736172769} a^{7} + \frac{2142312339946786123428915987184}{12637913024804179895882736172769} a^{6} - \frac{163295866820576730669184741439}{407674613703360641802668908799} a^{5} - \frac{661433055461638152096727241900}{12637913024804179895882736172769} a^{4} + \frac{5345395102040271237657473089143}{12637913024804179895882736172769} a^{3} + \frac{3538216176099935615011651220451}{12637913024804179895882736172769} a^{2} - \frac{925799347246927293819377648849}{12637913024804179895882736172769} a - \frac{194149148038701018036260057459}{407674613703360641802668908799}$
Class group and class number
$C_{5}\times C_{5}\times C_{65535}$, which has order $1638375$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||