Properties

Label 16.0.103...064.2
Degree $16$
Signature $[0, 8]$
Discriminant $1.039\times 10^{34}$
Root discriminant \(133.67\)
Ramified primes $2,83$
Class number $1638375$ (GRH)
Class group [5, 5, 65535] (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 180*x^14 - 1120*x^13 + 14026*x^12 - 69960*x^11 + 627024*x^10 - 2519560*x^9 + 17702027*x^8 - 56416264*x^7 + 324191712*x^6 - 784977032*x^5 + 3766659562*x^4 - 6286165360*x^3 + 25396479484*x^2 - 22375524712*x + 76059908671)
 
gp: K = bnfinit(y^16 - 8*y^15 + 180*y^14 - 1120*y^13 + 14026*y^12 - 69960*y^11 + 627024*y^10 - 2519560*y^9 + 17702027*y^8 - 56416264*y^7 + 324191712*y^6 - 784977032*y^5 + 3766659562*y^4 - 6286165360*y^3 + 25396479484*y^2 - 22375524712*y + 76059908671, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 8*x^15 + 180*x^14 - 1120*x^13 + 14026*x^12 - 69960*x^11 + 627024*x^10 - 2519560*x^9 + 17702027*x^8 - 56416264*x^7 + 324191712*x^6 - 784977032*x^5 + 3766659562*x^4 - 6286165360*x^3 + 25396479484*x^2 - 22375524712*x + 76059908671);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 8*x^15 + 180*x^14 - 1120*x^13 + 14026*x^12 - 69960*x^11 + 627024*x^10 - 2519560*x^9 + 17702027*x^8 - 56416264*x^7 + 324191712*x^6 - 784977032*x^5 + 3766659562*x^4 - 6286165360*x^3 + 25396479484*x^2 - 22375524712*x + 76059908671)
 

\( x^{16} - 8 x^{15} + 180 x^{14} - 1120 x^{13} + 14026 x^{12} - 69960 x^{11} + 627024 x^{10} + \cdots + 76059908671 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(10386864596368228067918124169560064\) \(\medspace = 2^{62}\cdot 83^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(133.67\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{31/8}83^{1/2}\approx 133.66887083876682$
Ramified primes:   \(2\), \(83\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2656=2^{5}\cdot 83\)
Dirichlet character group:    $\lbrace$$\chi_{2656}(1,·)$, $\chi_{2656}(1161,·)$, $\chi_{2656}(333,·)$, $\chi_{2656}(1493,·)$, $\chi_{2656}(665,·)$, $\chi_{2656}(165,·)$, $\chi_{2656}(1825,·)$, $\chi_{2656}(997,·)$, $\chi_{2656}(497,·)$, $\chi_{2656}(2157,·)$, $\chi_{2656}(829,·)$, $\chi_{2656}(1329,·)$, $\chi_{2656}(1993,·)$, $\chi_{2656}(2489,·)$, $\chi_{2656}(1661,·)$, $\chi_{2656}(2325,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{18\!\cdots\!21}a^{14}-\frac{7}{18\!\cdots\!21}a^{13}+\frac{73\!\cdots\!63}{18\!\cdots\!21}a^{12}-\frac{67\!\cdots\!45}{18\!\cdots\!21}a^{11}-\frac{48\!\cdots\!01}{18\!\cdots\!21}a^{10}-\frac{11\!\cdots\!14}{18\!\cdots\!21}a^{9}+\frac{69\!\cdots\!72}{18\!\cdots\!21}a^{8}+\frac{43\!\cdots\!71}{18\!\cdots\!21}a^{7}+\frac{57\!\cdots\!91}{18\!\cdots\!21}a^{6}-\frac{79\!\cdots\!36}{18\!\cdots\!21}a^{5}-\frac{52\!\cdots\!78}{18\!\cdots\!21}a^{4}+\frac{28\!\cdots\!38}{18\!\cdots\!21}a^{3}+\frac{61\!\cdots\!19}{18\!\cdots\!21}a^{2}+\frac{12\!\cdots\!26}{18\!\cdots\!21}a+\frac{23\!\cdots\!07}{59\!\cdots\!91}$, $\frac{1}{12\!\cdots\!69}a^{15}+\frac{34022737}{12\!\cdots\!69}a^{14}+\frac{48\!\cdots\!43}{12\!\cdots\!69}a^{13}-\frac{40\!\cdots\!49}{12\!\cdots\!69}a^{12}-\frac{30\!\cdots\!75}{12\!\cdots\!69}a^{11}+\frac{49\!\cdots\!02}{12\!\cdots\!69}a^{10}-\frac{91\!\cdots\!09}{12\!\cdots\!69}a^{9}+\frac{60\!\cdots\!92}{12\!\cdots\!69}a^{8}+\frac{47\!\cdots\!09}{12\!\cdots\!69}a^{7}+\frac{21\!\cdots\!84}{12\!\cdots\!69}a^{6}-\frac{16\!\cdots\!39}{40\!\cdots\!99}a^{5}-\frac{66\!\cdots\!00}{12\!\cdots\!69}a^{4}+\frac{53\!\cdots\!43}{12\!\cdots\!69}a^{3}+\frac{35\!\cdots\!51}{12\!\cdots\!69}a^{2}-\frac{92\!\cdots\!49}{12\!\cdots\!69}a-\frac{19\!\cdots\!59}{40\!\cdots\!99}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{5}\times C_{5}\times C_{65535}$, which has order $1638375$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{28332880}{32\!\cdots\!89}a^{14}-\frac{198330160}{32\!\cdots\!89}a^{13}+\frac{5008159726}{32\!\cdots\!89}a^{12}-\frac{27470666276}{32\!\cdots\!89}a^{11}+\frac{388305378410}{32\!\cdots\!89}a^{10}-\frac{1694439320000}{32\!\cdots\!89}a^{9}+\frac{17396227385793}{32\!\cdots\!89}a^{8}-\frac{59712347748528}{32\!\cdots\!89}a^{7}+\frac{484826786428284}{32\!\cdots\!89}a^{6}-\frac{12\!\cdots\!32}{32\!\cdots\!89}a^{5}+\frac{83\!\cdots\!39}{32\!\cdots\!89}a^{4}-\frac{14\!\cdots\!92}{32\!\cdots\!89}a^{3}+\frac{83\!\cdots\!72}{32\!\cdots\!89}a^{2}-\frac{76\!\cdots\!16}{32\!\cdots\!89}a+\frac{12\!\cdots\!36}{104798748388319}$, $\frac{17\!\cdots\!14}{18\!\cdots\!21}a^{14}-\frac{12\!\cdots\!98}{18\!\cdots\!21}a^{13}+\frac{28\!\cdots\!85}{18\!\cdots\!21}a^{12}-\frac{15\!\cdots\!36}{18\!\cdots\!21}a^{11}+\frac{19\!\cdots\!57}{18\!\cdots\!21}a^{10}-\frac{84\!\cdots\!24}{18\!\cdots\!21}a^{9}+\frac{76\!\cdots\!91}{18\!\cdots\!21}a^{8}-\frac{25\!\cdots\!12}{18\!\cdots\!21}a^{7}+\frac{18\!\cdots\!21}{18\!\cdots\!21}a^{6}-\frac{45\!\cdots\!50}{18\!\cdots\!21}a^{5}+\frac{25\!\cdots\!62}{18\!\cdots\!21}a^{4}-\frac{44\!\cdots\!48}{18\!\cdots\!21}a^{3}+\frac{21\!\cdots\!52}{18\!\cdots\!21}a^{2}-\frac{18\!\cdots\!14}{18\!\cdots\!21}a+\frac{24\!\cdots\!02}{59\!\cdots\!91}$, $\frac{50464632405476}{18\!\cdots\!21}a^{14}-\frac{353252426838332}{18\!\cdots\!21}a^{13}+\frac{90\!\cdots\!98}{18\!\cdots\!21}a^{12}-\frac{49\!\cdots\!72}{18\!\cdots\!21}a^{11}+\frac{71\!\cdots\!52}{18\!\cdots\!21}a^{10}-\frac{31\!\cdots\!46}{18\!\cdots\!21}a^{9}+\frac{33\!\cdots\!53}{18\!\cdots\!21}a^{8}-\frac{11\!\cdots\!92}{18\!\cdots\!21}a^{7}+\frac{10\!\cdots\!64}{18\!\cdots\!21}a^{6}-\frac{27\!\cdots\!24}{18\!\cdots\!21}a^{5}+\frac{23\!\cdots\!90}{18\!\cdots\!21}a^{4}-\frac{41\!\cdots\!08}{18\!\cdots\!21}a^{3}+\frac{33\!\cdots\!83}{18\!\cdots\!21}a^{2}-\frac{31\!\cdots\!42}{18\!\cdots\!21}a+\frac{74\!\cdots\!25}{59\!\cdots\!91}$, $\frac{32\!\cdots\!98}{12\!\cdots\!69}a^{15}-\frac{24\!\cdots\!35}{12\!\cdots\!69}a^{14}+\frac{47\!\cdots\!73}{12\!\cdots\!69}a^{13}-\frac{27\!\cdots\!77}{12\!\cdots\!69}a^{12}+\frac{29\!\cdots\!41}{12\!\cdots\!69}a^{11}-\frac{13\!\cdots\!03}{12\!\cdots\!69}a^{10}+\frac{10\!\cdots\!79}{12\!\cdots\!69}a^{9}-\frac{38\!\cdots\!51}{12\!\cdots\!69}a^{8}+\frac{23\!\cdots\!75}{12\!\cdots\!69}a^{7}-\frac{64\!\cdots\!75}{12\!\cdots\!69}a^{6}+\frac{30\!\cdots\!37}{12\!\cdots\!69}a^{5}-\frac{62\!\cdots\!42}{12\!\cdots\!69}a^{4}+\frac{23\!\cdots\!21}{12\!\cdots\!69}a^{3}-\frac{29\!\cdots\!92}{12\!\cdots\!69}a^{2}+\frac{77\!\cdots\!75}{12\!\cdots\!69}a-\frac{11\!\cdots\!51}{40\!\cdots\!99}$, $\frac{14\!\cdots\!24}{12\!\cdots\!69}a^{15}-\frac{11\!\cdots\!30}{12\!\cdots\!69}a^{14}+\frac{25\!\cdots\!48}{12\!\cdots\!69}a^{13}-\frac{14\!\cdots\!57}{12\!\cdots\!69}a^{12}+\frac{18\!\cdots\!42}{12\!\cdots\!69}a^{11}-\frac{84\!\cdots\!85}{12\!\cdots\!69}a^{10}+\frac{74\!\cdots\!12}{12\!\cdots\!69}a^{9}-\frac{27\!\cdots\!12}{12\!\cdots\!69}a^{8}+\frac{18\!\cdots\!56}{12\!\cdots\!69}a^{7}-\frac{53\!\cdots\!74}{12\!\cdots\!69}a^{6}+\frac{28\!\cdots\!19}{12\!\cdots\!69}a^{5}-\frac{58\!\cdots\!81}{12\!\cdots\!69}a^{4}+\frac{24\!\cdots\!85}{12\!\cdots\!69}a^{3}-\frac{31\!\cdots\!39}{12\!\cdots\!69}a^{2}+\frac{94\!\cdots\!36}{12\!\cdots\!69}a-\frac{14\!\cdots\!11}{40\!\cdots\!99}$, $\frac{16\!\cdots\!00}{12\!\cdots\!69}a^{15}-\frac{13\!\cdots\!70}{12\!\cdots\!69}a^{14}+\frac{21\!\cdots\!58}{12\!\cdots\!69}a^{13}+\frac{24\!\cdots\!54}{12\!\cdots\!69}a^{12}+\frac{11\!\cdots\!64}{12\!\cdots\!69}a^{11}+\frac{46\!\cdots\!17}{12\!\cdots\!69}a^{10}+\frac{32\!\cdots\!77}{12\!\cdots\!69}a^{9}+\frac{30\!\cdots\!61}{12\!\cdots\!69}a^{8}+\frac{42\!\cdots\!36}{12\!\cdots\!69}a^{7}+\frac{10\!\cdots\!74}{12\!\cdots\!69}a^{6}-\frac{39\!\cdots\!82}{12\!\cdots\!69}a^{5}+\frac{22\!\cdots\!43}{12\!\cdots\!69}a^{4}-\frac{69\!\cdots\!31}{12\!\cdots\!69}a^{3}+\frac{25\!\cdots\!15}{12\!\cdots\!69}a^{2}-\frac{52\!\cdots\!14}{12\!\cdots\!69}a+\frac{42\!\cdots\!37}{40\!\cdots\!99}$, $\frac{15\!\cdots\!84}{12\!\cdots\!69}a^{15}-\frac{11\!\cdots\!30}{12\!\cdots\!69}a^{14}+\frac{27\!\cdots\!66}{12\!\cdots\!69}a^{13}-\frac{16\!\cdots\!74}{12\!\cdots\!69}a^{12}+\frac{21\!\cdots\!92}{12\!\cdots\!69}a^{11}-\frac{99\!\cdots\!13}{12\!\cdots\!69}a^{10}+\frac{93\!\cdots\!69}{12\!\cdots\!69}a^{9}-\frac{34\!\cdots\!39}{12\!\cdots\!69}a^{8}+\frac{25\!\cdots\!60}{12\!\cdots\!69}a^{7}-\frac{75\!\cdots\!54}{12\!\cdots\!69}a^{6}+\frac{45\!\cdots\!18}{12\!\cdots\!69}a^{5}-\frac{95\!\cdots\!82}{12\!\cdots\!69}a^{4}+\frac{46\!\cdots\!01}{12\!\cdots\!69}a^{3}-\frac{60\!\cdots\!81}{12\!\cdots\!69}a^{2}+\frac{22\!\cdots\!27}{12\!\cdots\!69}a-\frac{28\!\cdots\!63}{40\!\cdots\!99}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 15753.94986242651 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 15753.94986242651 \cdot 1638375}{2\cdot\sqrt{10386864596368228067918124169560064}}\cr\approx \mathstrut & 0.307588070325566 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 180*x^14 - 1120*x^13 + 14026*x^12 - 69960*x^11 + 627024*x^10 - 2519560*x^9 + 17702027*x^8 - 56416264*x^7 + 324191712*x^6 - 784977032*x^5 + 3766659562*x^4 - 6286165360*x^3 + 25396479484*x^2 - 22375524712*x + 76059908671)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 8*x^15 + 180*x^14 - 1120*x^13 + 14026*x^12 - 69960*x^11 + 627024*x^10 - 2519560*x^9 + 17702027*x^8 - 56416264*x^7 + 324191712*x^6 - 784977032*x^5 + 3766659562*x^4 - 6286165360*x^3 + 25396479484*x^2 - 22375524712*x + 76059908671, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 8*x^15 + 180*x^14 - 1120*x^13 + 14026*x^12 - 69960*x^11 + 627024*x^10 - 2519560*x^9 + 17702027*x^8 - 56416264*x^7 + 324191712*x^6 - 784977032*x^5 + 3766659562*x^4 - 6286165360*x^3 + 25396479484*x^2 - 22375524712*x + 76059908671);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 8*x^15 + 180*x^14 - 1120*x^13 + 14026*x^12 - 69960*x^11 + 627024*x^10 - 2519560*x^9 + 17702027*x^8 - 56416264*x^7 + 324191712*x^6 - 784977032*x^5 + 3766659562*x^4 - 6286165360*x^3 + 25396479484*x^2 - 22375524712*x + 76059908671);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_8$ (as 16T5):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{-83}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-166}) \), \(\Q(\sqrt{2}, \sqrt{-83})\), \(\Q(\zeta_{16})^+\), 4.0.14108672.2, 8.0.199054625603584.9, \(\Q(\zeta_{32})^+\), 8.0.101915968309035008.12

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.8.0.1}{8} }^{2}$ ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.8.0.1}{8} }^{2}$ ${\href{/padicField/13.8.0.1}{8} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.1.0.1}{1} }^{16}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.8.0.1}{8} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.16.62.2$x^{16} + 8 x^{14} + 436 x^{12} + 32 x^{11} + 952 x^{10} + 144 x^{9} + 920 x^{8} + 448 x^{7} + 1232 x^{6} + 448 x^{5} + 584 x^{4} + 768 x^{3} + 240 x^{2} + 608 x + 508$$8$$2$$62$$C_8\times C_2$$[3, 4, 5]^{2}$
\(83\) Copy content Toggle raw display 83.16.8.1$x^{16} + 664 x^{14} + 192894 x^{12} + 130 x^{11} + 32019786 x^{10} - 75446 x^{9} + 3321798615 x^{8} - 19841850 x^{7} + 220549814727 x^{6} - 1032515432 x^{5} + 9153088134336 x^{4} + 32195922972 x^{3} + 217101057166265 x^{2} + 2532564215378 x + 2252767510002356$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$