Normalized defining polynomial
\( x^{16} - 3 x^{15} + 6 x^{14} - 7 x^{13} + 3 x^{12} + 3 x^{11} - 6 x^{10} + 7 x^{9} - 4 x^{8} + 7 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(100387585600000000\)
\(\medspace = 2^{12}\cdot 5^{8}\cdot 89^{4}\)
|
| |
Root discriminant: | \(11.55\) |
| |
Galois root discriminant: | $2^{3/2}5^{1/2}89^{1/2}\approx 59.665735560705194$ | ||
Ramified primes: |
\(2\), \(5\), \(89\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{10}+\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{14}-\frac{1}{2}a^{11}+\frac{1}{4}a^{10}+\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{11}+\frac{1}{4}a^{10}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a-\frac{1}{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1}{4}a^{15}-\frac{1}{4}a^{14}-\frac{1}{4}a^{13}+2a^{12}-\frac{7}{2}a^{11}+\frac{9}{4}a^{10}+\frac{3}{2}a^{9}-3a^{8}+\frac{3}{2}a^{7}+\frac{7}{4}a^{6}+\frac{5}{2}a^{5}-3a^{4}+\frac{9}{4}a^{3}+\frac{5}{4}a^{2}-\frac{13}{4}a+1$, $a$, $a^{15}-\frac{13}{4}a^{14}+6a^{13}-\frac{23}{4}a^{12}+\frac{1}{4}a^{11}+\frac{27}{4}a^{10}-\frac{13}{2}a^{9}+3a^{8}-2a^{7}+\frac{13}{2}a^{6}-\frac{21}{4}a^{5}+\frac{5}{4}a^{4}+\frac{33}{4}a^{3}-6a^{2}+\frac{11}{4}a-1$, $\frac{5}{4}a^{15}-\frac{7}{2}a^{14}+\frac{11}{2}a^{13}-5a^{12}-\frac{3}{4}a^{11}+\frac{21}{4}a^{10}-3a^{9}+4a^{8}-\frac{9}{2}a^{7}+\frac{21}{4}a^{6}-\frac{17}{4}a^{5}-\frac{5}{2}a^{4}+4a^{3}-\frac{7}{2}a^{2}+\frac{11}{4}a-\frac{3}{2}$, $\frac{9}{4}a^{15}-\frac{11}{2}a^{14}+\frac{35}{4}a^{13}-7a^{12}-3a^{11}+9a^{10}-\frac{19}{4}a^{9}+\frac{11}{2}a^{8}-\frac{5}{2}a^{7}+\frac{41}{4}a^{6}-\frac{27}{4}a^{5}-\frac{13}{4}a^{4}+\frac{31}{4}a^{3}-\frac{31}{4}a^{2}+\frac{11}{4}a-\frac{1}{4}$, $\frac{1}{2}a^{15}+\frac{3}{4}a^{14}-\frac{11}{4}a^{13}+6a^{12}-\frac{25}{4}a^{11}-a^{10}+7a^{9}-3a^{8}+4a^{7}+\frac{35}{4}a^{5}-4a^{4}-\frac{7}{4}a^{3}+\frac{23}{4}a^{2}-\frac{9}{2}a+2$, $\frac{7}{4}a^{15}-\frac{29}{4}a^{14}+\frac{51}{4}a^{13}-14a^{12}+3a^{11}+\frac{51}{4}a^{10}-\frac{23}{2}a^{9}+5a^{8}-\frac{19}{2}a^{7}+\frac{41}{4}a^{6}-16a^{5}+\frac{49}{4}a^{3}-\frac{47}{4}a^{2}+\frac{29}{4}a-3$
|
| |
Regulator: | \( 66.754406324 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 66.754406324 \cdot 1}{2\cdot\sqrt{100387585600000000}}\cr\approx \mathstrut & 0.25588738992 \end{aligned}\]
Galois group
$C_2^6:D_4$ (as 16T969):
A solvable group of order 512 |
The 44 conjugacy class representatives for $C_2^6:D_4$ |
Character table for $C_2^6:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.2225.1, 8.2.79210000.2, 8.2.79210000.1, 8.4.79210000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
2.2.4.12a1.2 | $x^{8} + 4 x^{7} + 12 x^{6} + 22 x^{5} + 31 x^{4} + 30 x^{3} + 22 x^{2} + 14 x + 5$ | $4$ | $2$ | $12$ | $C_2^2:C_4$ | $$[2, 2]^{4}$$ | |
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
\(89\)
| 89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
89.2.2.2a1.2 | $x^{4} + 164 x^{3} + 6730 x^{2} + 492 x + 98$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
89.2.2.2a1.2 | $x^{4} + 164 x^{3} + 6730 x^{2} + 492 x + 98$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |