Normalized defining polynomial
\( x^{15} - 3x^{14} + 7x^{12} - 6x^{11} + 4x^{9} - 6x^{8} + 6x^{7} - 7x^{6} + 6x^{4} - 5x^{3} + 3x^{2} + 1 \)
Invariants
| Degree: | $15$ |
| |
| Signature: | $[3, 6]$ |
| |
| Discriminant: |
\(12205980432301041\)
\(\medspace = 3^{20}\cdot 1871^{2}\)
|
| |
| Root discriminant: | \(11.82\) |
| |
| Galois root discriminant: | $3^{4/3}1871^{1/2}\approx 187.15376431258608$ | ||
| Ramified primes: |
\(3\), \(1871\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{323}a^{14}+\frac{44}{323}a^{13}+\frac{130}{323}a^{12}-\frac{20}{323}a^{11}+\frac{23}{323}a^{10}+\frac{112}{323}a^{9}+\frac{100}{323}a^{8}-\frac{151}{323}a^{7}+\frac{15}{323}a^{6}+\frac{52}{323}a^{5}-\frac{140}{323}a^{4}-\frac{6}{17}a^{3}+\frac{128}{323}a^{2}-\frac{118}{323}a-\frac{55}{323}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $\frac{1}{17}a^{14}+\frac{7}{17}a^{13}-\frac{11}{17}a^{12}-\frac{14}{17}a^{11}+\frac{45}{17}a^{10}-\frac{10}{17}a^{9}-\frac{49}{17}a^{8}+\frac{32}{17}a^{7}+\frac{2}{17}a^{6}+\frac{16}{17}a^{5}+\frac{4}{17}a^{4}-\frac{39}{17}a^{3}+\frac{25}{17}a^{2}-\frac{1}{17}a-\frac{30}{17}$, $\frac{398}{323}a^{14}-\frac{899}{323}a^{13}-\frac{909}{323}a^{12}+\frac{2699}{323}a^{11}+\frac{110}{323}a^{10}-\frac{1613}{323}a^{9}+\frac{394}{323}a^{8}-\frac{1312}{323}a^{7}+\frac{1448}{323}a^{6}-\frac{622}{323}a^{5}-\frac{1779}{323}a^{4}+\frac{94}{17}a^{3}+\frac{233}{323}a^{2}-\frac{129}{323}a+\frac{74}{323}$, $\frac{139}{323}a^{14}+\frac{344}{323}a^{13}+\frac{341}{323}a^{12}-\frac{1096}{323}a^{11}-\frac{290}{323}a^{10}+\frac{905}{323}a^{9}+\frac{312}{323}a^{8}+\frac{317}{323}a^{7}-\frac{470}{323}a^{6}-\frac{122}{323}a^{5}+\frac{403}{323}a^{4}-\frac{33}{17}a^{3}-\frac{673}{323}a^{2}+\frac{252}{323}a+\frac{216}{323}$, $\frac{46}{323}a^{14}+\frac{237}{323}a^{13}-\frac{166}{323}a^{12}-\frac{695}{323}a^{11}+\frac{880}{323}a^{10}+\frac{339}{323}a^{9}-\frac{724}{323}a^{8}+\frac{486}{323}a^{7}-\frac{367}{323}a^{6}+\frac{192}{323}a^{5}-\frac{20}{323}a^{4}-\frac{47}{17}a^{3}+\frac{572}{323}a^{2}-\frac{63}{323}a-\frac{54}{323}$, $\frac{398}{323}a^{14}-\frac{899}{323}a^{13}-\frac{909}{323}a^{12}+\frac{2699}{323}a^{11}+\frac{110}{323}a^{10}-\frac{1613}{323}a^{9}+\frac{394}{323}a^{8}-\frac{1312}{323}a^{7}+\frac{1448}{323}a^{6}-\frac{622}{323}a^{5}-\frac{1779}{323}a^{4}+\frac{94}{17}a^{3}+\frac{233}{323}a^{2}+\frac{194}{323}a+\frac{74}{323}$, $\frac{53}{323}a^{14}+\frac{252}{323}a^{13}-\frac{107}{323}a^{12}-\frac{878}{323}a^{11}+\frac{719}{323}a^{10}+\frac{1170}{323}a^{9}-\frac{778}{323}a^{8}-\frac{718}{323}a^{7}-\frac{149}{323}a^{6}+\frac{474}{323}a^{5}+\frac{314}{323}a^{4}-\frac{39}{17}a^{3}-\frac{1}{323}a^{2}+\frac{763}{323}a+\frac{8}{323}$, $\frac{12}{323}a^{14}-\frac{118}{323}a^{13}+\frac{268}{323}a^{12}+\frac{83}{323}a^{11}-\frac{693}{323}a^{10}+\frac{375}{323}a^{9}-\frac{92}{323}a^{8}+\frac{126}{323}a^{7}+\frac{826}{323}a^{6}-\frac{991}{323}a^{5}+\frac{581}{323}a^{4}-\frac{4}{17}a^{3}-\frac{725}{323}a^{2}+\frac{199}{323}a-\frac{337}{323}$
|
| |
| Regulator: | \( 82.95238709015337 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{6}\cdot 82.95238709015337 \cdot 1}{2\cdot\sqrt{12205980432301041}}\cr\approx \mathstrut & 0.184791399622152 \end{aligned}\]
Galois group
$D_5\wr C_3$ (as 15T50):
| A solvable group of order 3000 |
| The 32 conjugacy class representatives for $D_5\wr C_3$ |
| Character table for $D_5\wr C_3$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | $15$ | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }$ | $15$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }$ | $15$ | ${\href{/padicField/37.5.0.1}{5} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }$ | $15$ | $15$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.5.3.20a2.1 | $x^{15} + 6 x^{11} + 9 x^{10} + 12 x^{7} + 36 x^{6} + 15 x^{5} + 8 x^{3} + 36 x^{2} + 30 x + 10$ | $3$ | $5$ | $20$ | $C_{15}$ | $$[2]^{5}$$ |
|
\(1871\)
| $\Q_{1871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |