Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $50$ | |
| CHM label : | $[D(5)^{3}]3=D(5)wr3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15), (3,12)(6,9), (3,6,9,12,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 5: None
Low degree siblings
20T269, 30T408, 30T418, 30T419 x 2, 30T420 x 2, 30T421, 30T425, 30T426, 40T2384Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3, 6, 9,12,15)$ |
| $ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $5$ | $( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 8,14, 5,11)( 3, 6, 9,12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1 $ | $12$ | $5$ | $( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $8$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 5, 5, 5 $ | $24$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $24$ | $5$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 5, 5, 5 $ | $8$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $75$ | $2$ | $( 4,13)( 6,15)( 7,10)( 9,12)$ |
| $ 5, 2, 2, 2, 2, 1, 1 $ | $150$ | $10$ | $( 2, 5, 8,11,14)( 4,13)( 6,15)( 7,10)( 9,12)$ |
| $ 5, 2, 2, 2, 2, 1, 1 $ | $150$ | $10$ | $( 2, 8,14, 5,11)( 4,13)( 6,15)( 7,10)( 9,12)$ |
| $ 3, 3, 3, 3, 3 $ | $100$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 15 $ | $200$ | $15$ | $( 1, 9,14, 4,12, 2, 7,15, 5,10, 3, 8,13, 6,11)$ |
| $ 15 $ | $200$ | $15$ | $( 1,12, 2, 7, 3, 8,13, 9,14, 4,15, 5,10, 6,11)$ |
| $ 3, 3, 3, 3, 3 $ | $100$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 15 $ | $200$ | $15$ | $( 1,11, 9, 4,14,12, 7, 2,15,10, 5, 3,13, 8, 6)$ |
| $ 15 $ | $200$ | $15$ | $( 1,11,12, 7, 2, 3,13, 8, 9, 4,14,15,10, 5, 6)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 6,15)( 9,12)$ |
| $ 5, 2, 2, 1, 1, 1, 1, 1, 1 $ | $30$ | $10$ | $( 2, 5, 8,11,14)( 6,15)( 9,12)$ |
| $ 5, 2, 2, 1, 1, 1, 1, 1, 1 $ | $30$ | $10$ | $( 2, 8,14, 5,11)( 6,15)( 9,12)$ |
| $ 5, 2, 2, 1, 1, 1, 1, 1, 1 $ | $30$ | $10$ | $( 1, 4, 7,10,13)( 6,15)( 9,12)$ |
| $ 5, 5, 2, 2, 1 $ | $60$ | $10$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 6,15)( 9,12)$ |
| $ 5, 5, 2, 2, 1 $ | $60$ | $10$ | $( 1, 4, 7,10,13)( 2, 8,14, 5,11)( 6,15)( 9,12)$ |
| $ 5, 2, 2, 1, 1, 1, 1, 1, 1 $ | $30$ | $10$ | $( 1, 7,13, 4,10)( 6,15)( 9,12)$ |
| $ 5, 5, 2, 2, 1 $ | $60$ | $10$ | $( 1, 7,13, 4,10)( 2, 5, 8,11,14)( 6,15)( 9,12)$ |
| $ 5, 5, 2, 2, 1 $ | $60$ | $10$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 6,15)( 9,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $125$ | $2$ | $( 4,13)( 5,14)( 6,15)( 7,10)( 8,11)( 9,12)$ |
| $ 6, 6, 3 $ | $500$ | $6$ | $( 1, 6, 5,10,15,11)( 2, 7,12,14, 4, 9)( 3, 8,13)$ |
| $ 6, 6, 3 $ | $500$ | $6$ | $( 1,11, 6,10, 5,15)( 2,12, 4,14, 9, 7)( 3,13, 8)$ |
Group invariants
| Order: | $3000=2^{3} \cdot 3 \cdot 5^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |