Normalized defining polynomial
\( x^{14} - 4 x^{13} + 2 x^{12} + 11 x^{11} - 12 x^{10} - 27 x^{9} + 59 x^{8} + 9 x^{7} - 110 x^{6} + \cdots + 7 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-9176374064424843\)
\(\medspace = -\,3^{7}\cdot 127^{6}\)
|
| |
| Root discriminant: | \(13.81\) |
| |
| Galois root discriminant: | $3^{1/2}127^{6/7}\approx 110.10852872333544$ | ||
| Ramified primes: |
\(3\), \(127\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_7$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7}a^{12}-\frac{2}{7}a^{10}+\frac{3}{7}a^{9}+\frac{1}{7}a^{8}-\frac{1}{7}a^{6}-\frac{2}{7}a^{5}-\frac{2}{7}a^{4}+\frac{1}{7}a^{3}+\frac{3}{7}a^{2}-\frac{2}{7}a$, $\frac{1}{401509283}a^{13}+\frac{23697644}{401509283}a^{12}-\frac{161403013}{401509283}a^{11}-\frac{524844}{57358469}a^{10}-\frac{107151959}{401509283}a^{9}+\frac{92722404}{401509283}a^{8}-\frac{22514213}{401509283}a^{7}+\frac{10324904}{57358469}a^{6}+\frac{186080995}{401509283}a^{5}-\frac{181507643}{401509283}a^{4}+\frac{72660799}{401509283}a^{3}-\frac{188453280}{401509283}a^{2}-\frac{71118645}{401509283}a-\frac{23620139}{57358469}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( \frac{203093}{1170581} a^{13} - \frac{609893}{1170581} a^{12} - \frac{235293}{1170581} a^{11} + \frac{2061252}{1170581} a^{10} - \frac{305939}{1170581} a^{9} - \frac{5821148}{1170581} a^{8} + \frac{5812218}{1170581} a^{7} + \frac{7975808}{1170581} a^{6} - \frac{14076104}{1170581} a^{5} + \frac{4265446}{1170581} a^{4} + \frac{7733399}{1170581} a^{3} - \frac{7890974}{1170581} a^{2} + \frac{5172954}{1170581} a - \frac{971267}{1170581} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{92081697}{401509283}a^{13}-\frac{279469206}{401509283}a^{12}-\frac{135027174}{401509283}a^{11}+\frac{146538268}{57358469}a^{10}-\frac{74754258}{401509283}a^{9}-\frac{2897682013}{401509283}a^{8}+\frac{2478599192}{401509283}a^{7}+\frac{637420646}{57358469}a^{6}-\frac{6771372333}{401509283}a^{5}+\frac{610773917}{401509283}a^{4}+\frac{4165751794}{401509283}a^{3}-\frac{3072153911}{401509283}a^{2}+\frac{1530276136}{401509283}a-\frac{100260948}{57358469}$, $\frac{64283140}{401509283}a^{13}-\frac{233899515}{401509283}a^{12}+\frac{43509421}{401509283}a^{11}+\frac{106391526}{57358469}a^{10}-\frac{556399260}{401509283}a^{9}-\frac{2001465056}{401509283}a^{8}+\frac{3282400074}{401509283}a^{7}+\frac{272344593}{57358469}a^{6}-\frac{7017112568}{401509283}a^{5}+\frac{3546233464}{401509283}a^{4}+\frac{3981754943}{401509283}a^{3}-\frac{4568995212}{401509283}a^{2}+\frac{1548697933}{401509283}a-\frac{2102939}{57358469}$, $\frac{76824676}{401509283}a^{13}-\frac{235869777}{401509283}a^{12}-\frac{82042124}{401509283}a^{11}+\frac{116044778}{57358469}a^{10}-\frac{112561257}{401509283}a^{9}-\frac{2391181089}{401509283}a^{8}+\frac{2274327939}{401509283}a^{7}+\frac{479909440}{57358469}a^{6}-\frac{5589872887}{401509283}a^{5}+\frac{795534800}{401509283}a^{4}+\frac{4035359165}{401509283}a^{3}-\frac{2298359992}{401509283}a^{2}+\frac{1027180048}{401509283}a+\frac{34999329}{57358469}$, $\frac{36506991}{401509283}a^{13}-\frac{81512136}{401509283}a^{12}-\frac{102557307}{401509283}a^{11}+\frac{39444376}{57358469}a^{10}+\frac{188257124}{401509283}a^{9}-\frac{905366447}{401509283}a^{8}+\frac{269791953}{401509283}a^{7}+\frac{244192374}{57358469}a^{6}-\frac{981747677}{401509283}a^{5}-\frac{450267761}{401509283}a^{4}+\frac{935517600}{401509283}a^{3}+\frac{227701555}{401509283}a^{2}+\frac{154263541}{401509283}a+\frac{5215352}{57358469}$, $\frac{52817620}{401509283}a^{13}-\frac{182009244}{401509283}a^{12}-\frac{18032158}{401509283}a^{11}+\frac{91294410}{57358469}a^{10}-\frac{243261637}{401509283}a^{9}-\frac{1805860760}{401509283}a^{8}+\frac{2093609474}{401509283}a^{7}+\frac{343419878}{57358469}a^{6}-\frac{5072853292}{401509283}a^{5}+\frac{790606064}{401509283}a^{4}+\frac{3469655233}{401509283}a^{3}-\frac{1944180506}{401509283}a^{2}+\frac{408318247}{401509283}a-\frac{34360593}{57358469}$, $\frac{80201719}{401509283}a^{13}-\frac{242993610}{401509283}a^{12}-\frac{85228863}{401509283}a^{11}+\frac{112950921}{57358469}a^{10}-\frac{85842884}{401509283}a^{9}-\frac{2242040156}{401509283}a^{8}+\frac{2212781792}{401509283}a^{7}+\frac{419415366}{57358469}a^{6}-\frac{5164833906}{401509283}a^{5}+\frac{1697377333}{401509283}a^{4}+\frac{2344595956}{401509283}a^{3}-\frac{3061279343}{401509283}a^{2}+\frac{2202536334}{401509283}a-\frac{61570108}{57358469}$
|
| |
| Regulator: | \( 620.9879838596519 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 620.9879838596519 \cdot 1}{6\cdot\sqrt{9176374064424843}}\cr\approx \mathstrut & 0.417691339283327 \end{aligned}\]
Galois group
$C_7\times D_7$ (as 14T8):
| A solvable group of order 98 |
| The 35 conjugacy class representatives for $C_7 \wr C_2$ |
| Character table for $C_7 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | deg 14, deg 14 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.14.0.1}{14} }$ | R | ${\href{/padicField/5.14.0.1}{14} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{7}$ | ${\href{/padicField/11.14.0.1}{14} }$ | ${\href{/padicField/13.7.0.1}{7} }^{2}$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.7.0.1}{7} }^{2}$ | ${\href{/padicField/23.14.0.1}{14} }$ | ${\href{/padicField/29.14.0.1}{14} }$ | ${\href{/padicField/31.7.0.1}{7} }^{2}$ | ${\href{/padicField/37.7.0.1}{7} }^{2}$ | ${\href{/padicField/41.14.0.1}{14} }$ | ${\href{/padicField/43.7.0.1}{7} }^{2}$ | ${\href{/padicField/47.14.0.1}{14} }$ | ${\href{/padicField/53.14.0.1}{14} }$ | ${\href{/padicField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.7.2.7a1.2 | $x^{14} + 4 x^{9} + 2 x^{7} + 4 x^{4} + 4 x^{2} + 4$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
|
\(127\)
| $\Q_{127}$ | $x + 124$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{127}$ | $x + 124$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{127}$ | $x + 124$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{127}$ | $x + 124$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{127}$ | $x + 124$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{127}$ | $x + 124$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{127}$ | $x + 124$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 127.1.7.6a1.1 | $x^{7} + 127$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *98 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *98 | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.381.14t1.a.f | $1$ | $ 3 \cdot 127 $ | 14.0.38502899391974811462791218827.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.381.14t1.a.e | $1$ | $ 3 \cdot 127 $ | 14.0.38502899391974811462791218827.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.381.14t1.a.c | $1$ | $ 3 \cdot 127 $ | 14.0.38502899391974811462791218827.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.381.14t1.a.d | $1$ | $ 3 \cdot 127 $ | 14.0.38502899391974811462791218827.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.381.14t1.a.b | $1$ | $ 3 \cdot 127 $ | 14.0.38502899391974811462791218827.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.127.7t1.a.e | $1$ | $ 127 $ | 7.7.4195872914689.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.127.7t1.a.c | $1$ | $ 127 $ | 7.7.4195872914689.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.127.7t1.a.b | $1$ | $ 127 $ | 7.7.4195872914689.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.127.7t1.a.a | $1$ | $ 127 $ | 7.7.4195872914689.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.127.7t1.a.d | $1$ | $ 127 $ | 7.7.4195872914689.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.381.14t1.a.a | $1$ | $ 3 \cdot 127 $ | 14.0.38502899391974811462791218827.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.127.7t1.a.f | $1$ | $ 127 $ | 7.7.4195872914689.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| *98 | 2.381.14t8.a.e | $2$ | $ 3 \cdot 127 $ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.48387.7t2.a.b | $2$ | $ 3 \cdot 127^{2}$ | 7.1.113288568696603.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.48387.14t8.a.a | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.48387.14t8.b.b | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.48387.14t8.a.e | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.381.14t8.a.d | $2$ | $ 3 \cdot 127 $ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.48387.14t8.b.e | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.48387.14t8.a.f | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.48387.7t2.a.a | $2$ | $ 3 \cdot 127^{2}$ | 7.1.113288568696603.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.48387.14t8.b.c | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.381.14t8.a.f | $2$ | $ 3 \cdot 127 $ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.381.14t8.a.a | $2$ | $ 3 \cdot 127 $ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.48387.14t8.a.d | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.48387.14t8.b.d | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.48387.14t8.a.b | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.381.14t8.a.b | $2$ | $ 3 \cdot 127 $ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.381.14t8.a.c | $2$ | $ 3 \cdot 127 $ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.48387.7t2.a.c | $2$ | $ 3 \cdot 127^{2}$ | 7.1.113288568696603.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.48387.14t8.b.f | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.48387.14t8.a.c | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.48387.14t8.b.a | $2$ | $ 3 \cdot 127^{2}$ | 14.0.9176374064424843.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |