Basic invariants
| Dimension: | $1$ |
| Group: | $C_{14}$ |
| Conductor: | \(381\)\(\medspace = 3 \cdot 127 \) |
| Artin field: | Galois closure of 14.0.38502899391974811462791218827.1 |
| Galois orbit size: | $6$ |
| Smallest permutation container: | $C_{14}$ |
| Parity: | odd |
| Dirichlet character: | \(\chi_{381}(8,\cdot)\) |
| Projective image: | $C_1$ |
| Projective field: | Galois closure of \(\Q\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{14} - x^{13} + 55 x^{12} - 8 x^{11} + 2389 x^{10} - 526 x^{9} + 27699 x^{8} + 21346 x^{7} + \cdots + 1256641 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{7} + x + 28 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( a^{6} + 7 a^{5} + 18 a^{3} + 22 a^{2} + 10 a + 15 + \left(a^{6} + 24 a^{5} + 6 a^{4} + 21 a^{3} + 15 a^{2} + 8 a + 29\right)\cdot 31 + \left(19 a^{6} + 12 a^{5} + 7 a^{4} + 23 a^{3} + 8 a^{2} + 8 a + 10\right)\cdot 31^{2} + \left(7 a^{6} + 12 a^{5} + 11 a^{4} + 13 a^{3} + 19 a^{2} + 24 a + 3\right)\cdot 31^{3} + \left(15 a^{6} + 23 a^{5} + 22 a^{4} + 15 a^{3} + 15 a^{2} + 27 a + 20\right)\cdot 31^{4} + \left(5 a^{6} + 24 a^{5} + 17 a^{4} + 27 a^{3} + 18 a^{2} + 6 a + 26\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 2 }$ | $=$ |
\( 5 a^{6} + 18 a^{5} + 18 a^{4} + 6 a^{3} + 4 a^{2} + 10 a + 8 + \left(3 a^{6} + 19 a^{5} + 26 a^{4} + 29 a^{3} + 20 a^{2} + 21 a + 27\right)\cdot 31 + \left(22 a^{6} + 28 a^{5} + 27 a^{4} + 12 a^{3} + 16 a + 19\right)\cdot 31^{2} + \left(19 a^{6} + a^{5} + 16 a^{4} + 18 a^{3} + 14 a^{2} + 14 a + 15\right)\cdot 31^{3} + \left(9 a^{6} + 29 a^{5} + 9 a^{4} + 4 a^{3} + 7 a^{2} + 28 a + 14\right)\cdot 31^{4} + \left(11 a^{5} + 30 a^{4} + 25 a^{3} + 9 a^{2} + 23 a\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 3 }$ | $=$ |
\( 8 a^{6} + a^{5} + 21 a^{4} + 8 a^{3} + 5 a^{2} + 25 a + 21 + \left(29 a^{6} + 3 a^{5} + 26 a^{4} + 17 a^{3} + 29 a^{2} + 5 a + 22\right)\cdot 31 + \left(26 a^{5} + 13 a^{4} + 30 a^{3} + a^{2} + 8 a + 8\right)\cdot 31^{2} + \left(5 a^{6} + 19 a^{5} + 29 a^{4} + 2 a^{3} + 24 a^{2} + 8 a + 23\right)\cdot 31^{3} + \left(26 a^{6} + 19 a^{5} + 8 a^{4} + 6 a^{3} + 25 a^{2} + a + 11\right)\cdot 31^{4} + \left(27 a^{6} + 12 a^{5} + 8 a^{4} + 17 a^{3} + 7 a^{2} + 11 a + 10\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 4 }$ | $=$ |
\( 8 a^{6} + 29 a^{5} + 26 a^{4} + 7 a^{3} + 4 a^{2} + 28 a + 15 + \left(23 a^{6} + 22 a^{5} + 28 a^{4} + 15 a^{3} + 20 a^{2} + 13\right)\cdot 31 + \left(20 a^{6} + 17 a^{5} + a^{4} + 16 a^{3} + 15 a + 5\right)\cdot 31^{2} + \left(11 a^{6} + 5 a^{5} + a^{4} + 6 a^{3} + 2 a^{2} + 13\right)\cdot 31^{3} + \left(5 a^{6} + 22 a^{5} + 13 a^{4} + a^{3} + 21 a^{2} + 30 a + 6\right)\cdot 31^{4} + \left(a^{6} + a^{5} + 26 a^{4} + 29 a^{3} + 8 a^{2} + 6 a + 1\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 5 }$ | $=$ |
\( 9 a^{6} + 21 a^{5} + 6 a^{4} + 4 a^{3} + 20 a^{2} + 16 a + 13 + \left(11 a^{6} + 24 a^{5} + 12 a^{4} + 19 a^{3} + a^{2} + 24 a + 29\right)\cdot 31 + \left(a^{6} + 20 a^{5} + 14 a^{4} + 29 a^{3} + 9 a^{2} + 15 a + 17\right)\cdot 31^{2} + \left(10 a^{6} + 4 a^{5} + 2 a^{4} + 2 a^{3} + 7 a^{2} + 24 a + 27\right)\cdot 31^{3} + \left(26 a^{6} + 18 a^{5} + 19 a^{4} + 28 a^{3} + 10 a^{2} + 5 a + 11\right)\cdot 31^{4} + \left(30 a^{6} + 19 a^{5} + 16 a^{4} + 28 a^{3} + 2 a^{2} + 20 a + 17\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 6 }$ | $=$ |
\( 11 a^{6} + 26 a^{5} + 20 a^{4} + 23 a^{2} + 14 a + 22 + \left(20 a^{6} + 30 a^{5} + 4 a^{4} + 17 a^{3} + 29 a^{2} + 10 a + 28\right)\cdot 31 + \left(30 a^{6} + 15 a^{5} + 5 a^{4} + 21 a^{3} + 23 a^{2} + 18 a + 13\right)\cdot 31^{2} + \left(4 a^{6} + 2 a^{5} + 17 a^{4} + 22 a^{3} + 18 a^{2} + 11 a + 7\right)\cdot 31^{3} + \left(a^{6} + 28 a^{4} + 7 a^{3} + 20 a^{2} + 10 a + 7\right)\cdot 31^{4} + \left(28 a^{6} + 6 a^{5} + 18 a^{4} + a^{3} + 28 a^{2} + 27 a + 24\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 7 }$ | $=$ |
\( 12 a^{6} + 4 a^{5} + 14 a^{4} + a^{3} + 5 a^{2} + 24 a + 14 + \left(25 a^{6} + 12 a^{5} + 23 a^{4} + 21 a^{3} + 19 a^{2} + 24 a + 6\right)\cdot 31 + \left(29 a^{6} + a^{5} + 22 a^{4} + 3 a^{2} + 27 a + 13\right)\cdot 31^{2} + \left(12 a^{6} + 29 a^{5} + 26 a^{4} + 14 a^{3} + 30 a^{2} + 6 a + 5\right)\cdot 31^{3} + \left(29 a^{6} + 5 a^{5} + 30 a^{4} + 28 a^{3} + 12 a^{2} + 12 a + 18\right)\cdot 31^{4} + \left(17 a^{6} + 17 a^{5} + 29 a^{4} + 30 a^{3} + 15 a^{2} + 8 a + 15\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 8 }$ | $=$ |
\( 14 a^{6} + 25 a^{5} + 29 a^{4} + 14 a^{3} + a^{2} + 5 a + 29 + \left(22 a^{6} + 29 a^{5} + 10 a^{4} + a^{3} + 3 a^{2} + 18 a + 3\right)\cdot 31 + \left(12 a^{6} + 24 a^{5} + 3 a^{3} + 18 a^{2} + 13 a + 25\right)\cdot 31^{2} + \left(27 a^{6} + 23 a^{5} + 30 a^{4} + 6 a^{3} + 18 a^{2} + 23 a + 17\right)\cdot 31^{3} + \left(22 a^{6} + 20 a^{5} + 4 a^{4} + 22 a^{3} + 6 a^{2} + 20 a + 12\right)\cdot 31^{4} + \left(5 a^{6} + 27 a^{5} + 26 a^{4} + 6 a^{3} + 3 a^{2} + 18\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 9 }$ | $=$ |
\( 18 a^{6} + 2 a^{5} + 17 a^{4} + 18 a^{3} + 2 a^{2} + 10 a + 28 + \left(18 a^{6} + 4 a^{5} + 3 a^{4} + 18 a^{3} + 21 a + 13\right)\cdot 31 + \left(5 a^{6} + 30 a^{5} + 7 a^{4} + 15 a^{3} + 8 a^{2} + 4 a + 23\right)\cdot 31^{2} + \left(20 a^{6} + 21 a^{5} + 3 a^{4} + 16 a^{3} + 22 a^{2} + 19 a + 2\right)\cdot 31^{3} + \left(23 a^{6} + 25 a^{5} + 22 a^{4} + 15 a^{3} + 28 a^{2} + 12 a + 22\right)\cdot 31^{4} + \left(17 a^{6} + 24 a^{5} + 9 a^{4} + 13 a^{3} + 10 a^{2} + 25 a + 28\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 10 }$ | $=$ |
\( 24 a^{6} + 6 a^{5} + 7 a^{4} + 22 a^{2} + 8 a + 17 + \left(7 a^{6} + 22 a^{5} + 24 a^{4} + 23 a^{3} + 5 a^{2} + 17\right)\cdot 31 + \left(20 a^{6} + 19 a^{5} + 12 a^{4} + 4 a^{3} + 3 a^{2} + 16 a + 7\right)\cdot 31^{2} + \left(7 a^{6} + 6 a^{5} + 26 a^{4} + 17 a^{3} + 25 a^{2} + 26 a + 12\right)\cdot 31^{3} + \left(25 a^{6} + 18 a^{5} + 4 a^{4} + 17 a^{3} + 11 a^{2} + 28 a + 15\right)\cdot 31^{4} + \left(28 a^{6} + 9 a^{5} + 30 a^{4} + 21 a^{3} + 13 a^{2} + 29 a + 24\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 11 }$ | $=$ |
\( 25 a^{6} + 20 a^{5} + 16 a^{3} + 23 a^{2} + 2 a + 3 + \left(10 a^{6} + 4 a^{5} + 26 a^{4} + 21 a^{3} + 27 a + 16\right)\cdot 31 + \left(2 a^{6} + 5 a^{5} + 27 a^{4} + 22 a^{3} + 7 a^{2} + 27 a + 29\right)\cdot 31^{2} + \left(27 a^{6} + 8 a^{5} + 28 a^{4} + 8 a^{3} + 18 a^{2} + 16 a + 21\right)\cdot 31^{3} + \left(20 a^{5} + 14 a^{4} + 13 a^{3} + 26 a^{2} + 9 a + 24\right)\cdot 31^{4} + \left(22 a^{6} + 3 a^{5} + 13 a^{4} + 17 a^{3} + 16 a^{2} + 5\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 12 }$ | $=$ |
\( 25 a^{6} + 28 a^{5} + 28 a^{4} + 30 a^{3} + 20 a^{2} + 19 a + 9 + \left(23 a^{6} + 8 a^{5} + 12 a^{4} + 12 a^{3} + a^{2} + 29 a\right)\cdot 31 + \left(26 a^{6} + 12 a^{5} + 13 a^{4} + 28 a^{3} + 9 a^{2} + a + 22\right)\cdot 31^{2} + \left(27 a^{6} + a^{5} + 16 a^{4} + 29 a^{3} + 5 a^{2} + 30 a + 20\right)\cdot 31^{3} + \left(8 a^{6} + 7 a^{5} + a^{4} + 2 a^{3} + 17 a^{2} + 11 a + 14\right)\cdot 31^{4} + \left(27 a^{6} + 4 a^{5} + 23 a^{4} + 9 a^{3} + 9 a^{2} + 5\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 13 }$ | $=$ |
\( 28 a^{6} + 10 a^{5} + 23 a^{4} + 28 a^{3} + 10 a^{2} + 19 a + 16 + \left(3 a^{6} + 17 a^{5} + 7 a^{4} + 3 a^{3} + 28 a^{2} + 29 a + 27\right)\cdot 31 + \left(7 a^{6} + 7 a^{5} + 28 a^{4} + 26 a^{3} + 26 a^{2} + 3 a + 22\right)\cdot 31^{2} + \left(25 a^{6} + 25 a^{5} + 26 a^{4} + 22 a^{3} + 23 a^{2} + 9 a\right)\cdot 31^{3} + \left(15 a^{6} + 18 a^{5} + 9 a^{4} + 8 a^{3} + a^{2} + 19 a + 25\right)\cdot 31^{4} + \left(7 a^{6} + 19 a^{5} + 26 a^{4} + 19 a^{3} + 29 a^{2} + 17 a + 1\right)\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 14 }$ | $=$ |
\( 29 a^{6} + 20 a^{5} + 8 a^{4} + 5 a^{3} + 25 a^{2} + 27 a + 8 + \left(15 a^{6} + 23 a^{5} + 3 a^{4} + 26 a^{3} + 10 a^{2} + 25 a + 11\right)\cdot 31 + \left(17 a^{6} + 24 a^{5} + 3 a^{4} + 11 a^{3} + 3 a^{2} + 7 a + 27\right)\cdot 31^{2} + \left(9 a^{6} + 22 a^{5} + 11 a^{4} + 3 a^{3} + 19 a^{2} + a + 13\right)\cdot 31^{3} + \left(6 a^{6} + 18 a^{5} + 26 a^{4} + 14 a^{3} + 10 a^{2} + 29 a + 12\right)\cdot 31^{4} + \left(27 a^{6} + 2 a^{5} + a^{4} + 12 a^{2} + 6 a + 5\right)\cdot 31^{5} +O(31^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 14 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 14 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $1$ | |
| $1$ | $2$ | $(1,11)(2,12)(3,8)(4,5)(6,10)(7,14)(9,13)$ | $-1$ | ✓ |
| $1$ | $7$ | $(1,5,3,12,10,13,14)(2,6,9,7,11,4,8)$ | $\zeta_{7}^{5}$ | |
| $1$ | $7$ | $(1,3,10,14,5,12,13)(2,9,11,8,6,7,4)$ | $\zeta_{7}^{3}$ | |
| $1$ | $7$ | $(1,12,14,3,13,5,10)(2,7,8,9,4,6,11)$ | $\zeta_{7}$ | |
| $1$ | $7$ | $(1,10,5,13,3,14,12)(2,11,6,4,9,8,7)$ | $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - \zeta_{7} - 1$ | |
| $1$ | $7$ | $(1,13,12,5,14,10,3)(2,4,7,6,8,11,9)$ | $\zeta_{7}^{4}$ | |
| $1$ | $7$ | $(1,14,13,10,12,3,5)(2,8,4,11,7,9,6)$ | $\zeta_{7}^{2}$ | |
| $1$ | $14$ | $(1,6,5,9,3,7,12,11,10,4,13,8,14,2)$ | $\zeta_{7}^{5} + \zeta_{7}^{4} + \zeta_{7}^{3} + \zeta_{7}^{2} + \zeta_{7} + 1$ | |
| $1$ | $14$ | $(1,9,12,4,14,6,3,11,13,2,5,7,10,8)$ | $-\zeta_{7}^{4}$ | |
| $1$ | $14$ | $(1,7,13,6,12,8,5,11,14,9,10,2,3,4)$ | $-\zeta_{7}^{2}$ | |
| $1$ | $14$ | $(1,4,3,2,10,9,14,11,5,8,12,6,13,7)$ | $-\zeta_{7}^{5}$ | |
| $1$ | $14$ | $(1,8,10,7,5,2,13,11,3,6,14,4,12,9)$ | $-\zeta_{7}^{3}$ | |
| $1$ | $14$ | $(1,2,14,8,13,4,10,11,12,7,3,9,5,6)$ | $-\zeta_{7}$ |