Normalized defining polynomial
\( x^{14} - x^{13} + 55 x^{12} - 8 x^{11} + 2389 x^{10} - 526 x^{9} + 27699 x^{8} + 21346 x^{7} + 220112 x^{6} + 184596 x^{5} + 991629 x^{4} + 1196220 x^{3} + 2970241 x^{2} + 1920273 x + 1256641 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38502899391974811462791218827=-\,3^{7}\cdot 127^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(381=3\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{381}(32,·)$, $\chi_{381}(1,·)$, $\chi_{381}(2,·)$, $\chi_{381}(131,·)$, $\chi_{381}(4,·)$, $\chi_{381}(262,·)$, $\chi_{381}(8,·)$, $\chi_{381}(64,·)$, $\chi_{381}(128,·)$, $\chi_{381}(256,·)$, $\chi_{381}(143,·)$, $\chi_{381}(16,·)$, $\chi_{381}(286,·)$, $\chi_{381}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{19} a^{8} + \frac{4}{19} a^{7} - \frac{9}{19} a^{6} - \frac{3}{19} a^{5} + \frac{4}{19} a^{4} - \frac{4}{19} a^{3} - \frac{2}{19} a^{2} - \frac{3}{19} a$, $\frac{1}{19} a^{9} - \frac{6}{19} a^{7} - \frac{5}{19} a^{6} - \frac{3}{19} a^{5} - \frac{1}{19} a^{4} - \frac{5}{19} a^{3} + \frac{5}{19} a^{2} - \frac{7}{19} a$, $\frac{1}{19} a^{10} + \frac{1}{19} a$, $\frac{1}{19} a^{11} + \frac{1}{19} a^{2}$, $\frac{1}{13357} a^{12} - \frac{275}{13357} a^{11} + \frac{329}{13357} a^{10} + \frac{26}{13357} a^{9} + \frac{87}{13357} a^{8} - \frac{207}{13357} a^{7} + \frac{3533}{13357} a^{6} - \frac{3759}{13357} a^{5} + \frac{4160}{13357} a^{4} + \frac{1309}{13357} a^{3} + \frac{289}{13357} a^{2} - \frac{298}{703} a + \frac{1}{37}$, $\frac{1}{47923643358268100783319591021239} a^{13} - \frac{46286990731427049764466583}{1295233604277516237387015973547} a^{12} + \frac{1051020318095302757364957411941}{47923643358268100783319591021239} a^{11} + \frac{1191909614936580248241659096186}{47923643358268100783319591021239} a^{10} - \frac{871944959408959510267290664359}{47923643358268100783319591021239} a^{9} - \frac{1052710104845313133166478901773}{47923643358268100783319591021239} a^{8} - \frac{5181681673175672281766636894624}{47923643358268100783319591021239} a^{7} - \frac{8262792604900607764568521898248}{47923643358268100783319591021239} a^{6} + \frac{680634458925386893696974457218}{2522297018856215830701031106381} a^{5} + \frac{14363022323576730464323539070694}{47923643358268100783319591021239} a^{4} + \frac{19550906327649752727514912236249}{47923643358268100783319591021239} a^{3} - \frac{12606870022278354558816851454065}{47923643358268100783319591021239} a^{2} + \frac{39652586258297349355171279923}{2522297018856215830701031106381} a + \frac{434362527023908342426633927}{2250041943671914211151678061}$
Class group and class number
$C_{7}\times C_{301}$, which has order $2107$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{35474933512473195438492}{68170189698816644073000840713} a^{13} - \frac{25303175086855328037978}{68170189698816644073000840713} a^{12} + \frac{1953068755276894213436472}{68170189698816644073000840713} a^{11} + \frac{157868066277180523904677}{68170189698816644073000840713} a^{10} + \frac{85358900860091325513038985}{68170189698816644073000840713} a^{9} + \frac{147954809086642038373641}{68170189698816644073000840713} a^{8} + \frac{1003007784221497741027478840}{68170189698816644073000840713} a^{7} + \frac{794934126303847734225193443}{68170189698816644073000840713} a^{6} + \frac{8258135911967076194188213830}{68170189698816644073000840713} a^{5} + \frac{6802701663391554828509488074}{68170189698816644073000840713} a^{4} + \frac{36573570897297951304715061957}{68170189698816644073000840713} a^{3} + \frac{30513602778058112483407320627}{68170189698816644073000840713} a^{2} + \frac{110488640461098576831471185267}{68170189698816644073000840713} a + \frac{63830071491870838859470249}{60811944423565248950045353} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 546287.2103473756 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.4195872914689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $127$ | 127.7.6.1 | $x^{7} - 127$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 127.7.6.1 | $x^{7} - 127$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |