Normalized defining polynomial
\( x^{14} - 2 x^{13} + 2 x^{12} - 5 x^{11} + 8 x^{10} + 2 x^{9} - 6 x^{8} + 11 x^{7} - 3 x^{6} + 9 x^{5} + \cdots + 7 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-5205914289462607\)
\(\medspace = -\,7^{7}\cdot 43^{6}\)
|
| |
| Root discriminant: | \(13.26\) |
| |
| Galois root discriminant: | $7^{1/2}43^{6/7}\approx 66.47599386519646$ | ||
| Ramified primes: |
\(7\), \(43\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_7$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-7}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7}a^{10}+\frac{2}{7}a^{9}+\frac{3}{7}a^{8}+\frac{1}{7}a^{7}+\frac{3}{7}a^{6}+\frac{2}{7}a^{5}-\frac{2}{7}a^{4}+\frac{2}{7}a^{3}+\frac{2}{7}a^{2}$, $\frac{1}{7}a^{11}-\frac{1}{7}a^{9}+\frac{2}{7}a^{8}+\frac{1}{7}a^{7}+\frac{3}{7}a^{6}+\frac{1}{7}a^{5}-\frac{1}{7}a^{4}-\frac{2}{7}a^{3}+\frac{3}{7}a^{2}$, $\frac{1}{7}a^{12}-\frac{3}{7}a^{9}-\frac{3}{7}a^{8}-\frac{3}{7}a^{7}-\frac{3}{7}a^{6}+\frac{1}{7}a^{5}+\frac{3}{7}a^{4}-\frac{2}{7}a^{3}+\frac{2}{7}a^{2}$, $\frac{1}{1474151}a^{13}-\frac{23202}{1474151}a^{12}+\frac{10694}{1474151}a^{11}-\frac{22251}{1474151}a^{10}+\frac{98792}{210593}a^{9}+\frac{417500}{1474151}a^{8}+\frac{435622}{1474151}a^{7}+\frac{348867}{1474151}a^{6}-\frac{59260}{210593}a^{5}+\frac{145095}{1474151}a^{4}+\frac{335716}{1474151}a^{3}-\frac{250289}{1474151}a^{2}+\frac{33515}{210593}a-\frac{38642}{210593}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{122282}{1474151}a^{13}-\frac{288661}{1474151}a^{12}+\frac{46052}{210593}a^{11}-\frac{456408}{1474151}a^{10}+\frac{817223}{1474151}a^{9}+\frac{358754}{1474151}a^{8}-\frac{2244097}{1474151}a^{7}+\frac{468398}{210593}a^{6}-\frac{325702}{1474151}a^{5}+\frac{1520691}{1474151}a^{4}+\frac{3868131}{1474151}a^{3}-\frac{3728296}{1474151}a^{2}+\frac{352043}{210593}a+\frac{696469}{210593}$, $\frac{137623}{1474151}a^{13}-\frac{538966}{1474151}a^{12}+\frac{958850}{1474151}a^{11}-\frac{1490711}{1474151}a^{10}+\frac{2856096}{1474151}a^{9}-\frac{415449}{210593}a^{8}-\frac{8734}{1474151}a^{7}+\frac{2815745}{1474151}a^{6}-\frac{2907164}{1474151}a^{5}+\frac{629054}{210593}a^{4}-\frac{1229353}{1474151}a^{3}-\frac{2195525}{1474151}a^{2}+\frac{658738}{210593}a+\frac{77063}{210593}$, $\frac{58086}{210593}a^{13}-\frac{1097948}{1474151}a^{12}+\frac{1562268}{1474151}a^{11}-\frac{3174124}{1474151}a^{10}+\frac{5507085}{1474151}a^{9}-\frac{2892893}{1474151}a^{8}-\frac{51830}{210593}a^{7}+\frac{4473005}{1474151}a^{6}-\frac{5235056}{1474151}a^{5}+\frac{7554332}{1474151}a^{4}+\frac{1889850}{1474151}a^{3}-\frac{5469111}{1474151}a^{2}+\frac{424779}{210593}a+\frac{429246}{210593}$, $\frac{43894}{1474151}a^{13}-\frac{120}{210593}a^{12}-\frac{9361}{1474151}a^{11}-\frac{165653}{1474151}a^{10}-\frac{32091}{1474151}a^{9}+\frac{363326}{1474151}a^{8}+\frac{87318}{210593}a^{7}+\frac{319289}{1474151}a^{6}+\frac{1025258}{1474151}a^{5}-\frac{795948}{1474151}a^{4}+\frac{1778859}{1474151}a^{3}+\frac{1083223}{1474151}a^{2}+\frac{115305}{210593}a+\frac{174667}{210593}$, $\frac{214710}{1474151}a^{13}-\frac{545191}{1474151}a^{12}+\frac{855633}{1474151}a^{11}-\frac{1684156}{1474151}a^{10}+\frac{2606997}{1474151}a^{9}-\frac{1486717}{1474151}a^{8}+\frac{45786}{1474151}a^{7}+\frac{3831853}{1474151}a^{6}-\frac{3063605}{1474151}a^{5}+\frac{557863}{210593}a^{4}+\frac{652692}{1474151}a^{3}-\frac{1693008}{1474151}a^{2}+\frac{464026}{210593}a+\frac{329787}{210593}$, $\frac{96617}{1474151}a^{13}-\frac{155742}{1474151}a^{12}+\frac{263533}{1474151}a^{11}-\frac{512709}{1474151}a^{10}+\frac{69532}{210593}a^{9}+\frac{193094}{1474151}a^{8}-\frac{89458}{210593}a^{7}+\frac{3179219}{1474151}a^{6}-\frac{1131296}{1474151}a^{5}+\frac{3047686}{1474151}a^{4}+\frac{2023656}{1474151}a^{3}-\frac{199309}{1474151}a^{2}+\frac{461973}{210593}a+\frac{129183}{210593}$
|
| |
| Regulator: | \( 154.6496312968527 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 154.6496312968527 \cdot 1}{2\cdot\sqrt{5205914289462607}}\cr\approx \mathstrut & 0.414313862894185 \end{aligned}\]
Galois group
$C_7\times D_7$ (as 14T8):
| A solvable group of order 98 |
| The 35 conjugacy class representatives for $C_7 \wr C_2$ |
| Character table for $C_7 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | 14.0.32908474225670013957008743.2, deg 14 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}$ | ${\href{/padicField/3.14.0.1}{14} }$ | ${\href{/padicField/5.14.0.1}{14} }$ | R | ${\href{/padicField/11.7.0.1}{7} }^{2}$ | ${\href{/padicField/13.14.0.1}{14} }$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.14.0.1}{14} }$ | ${\href{/padicField/23.7.0.1}{7} }^{2}$ | ${\href{/padicField/29.7.0.1}{7} }^{2}$ | ${\href{/padicField/31.14.0.1}{14} }$ | ${\href{/padicField/37.7.0.1}{7} }^{2}$ | ${\href{/padicField/41.14.0.1}{14} }$ | R | ${\href{/padicField/47.14.0.1}{14} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{7}$ | ${\href{/padicField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(43\)
| 43.7.1.0a1.1 | $x^{7} + 42 x^{2} + 7 x + 40$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ |
| 43.1.7.6a1.2 | $x^{7} + 129$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *98 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *98 | 1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.301.14t1.a.a | $1$ | $ 7 \cdot 43 $ | 14.0.32908474225670013957008743.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.43.7t1.a.b | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.301.14t1.a.c | $1$ | $ 7 \cdot 43 $ | 14.0.32908474225670013957008743.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.301.14t1.a.d | $1$ | $ 7 \cdot 43 $ | 14.0.32908474225670013957008743.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.301.14t1.a.f | $1$ | $ 7 \cdot 43 $ | 14.0.32908474225670013957008743.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.43.7t1.a.d | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.301.14t1.a.b | $1$ | $ 7 \cdot 43 $ | 14.0.32908474225670013957008743.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.301.14t1.a.e | $1$ | $ 7 \cdot 43 $ | 14.0.32908474225670013957008743.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.43.7t1.a.f | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.c | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.a | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.e | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 2.12943.7t2.a.b | $2$ | $ 7 \cdot 43^{2}$ | 7.1.2168227525807.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| *98 | 2.301.14t8.b.c | $2$ | $ 7 \cdot 43 $ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.301.14t8.b.a | $2$ | $ 7 \cdot 43 $ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.12943.14t8.c.e | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.12943.14t8.c.f | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.12943.14t8.d.a | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.301.14t8.b.e | $2$ | $ 7 \cdot 43 $ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.301.14t8.b.d | $2$ | $ 7 \cdot 43 $ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.12943.7t2.a.c | $2$ | $ 7 \cdot 43^{2}$ | 7.1.2168227525807.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.12943.14t8.d.c | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.301.14t8.b.b | $2$ | $ 7 \cdot 43 $ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.12943.14t8.d.f | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.301.14t8.b.f | $2$ | $ 7 \cdot 43 $ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.12943.14t8.d.e | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.12943.14t8.c.a | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.12943.14t8.c.c | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.12943.14t8.c.b | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.12943.7t2.a.a | $2$ | $ 7 \cdot 43^{2}$ | 7.1.2168227525807.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.12943.14t8.c.d | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.12943.14t8.d.b | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.12943.14t8.d.d | $2$ | $ 7 \cdot 43^{2}$ | 14.0.5205914289462607.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |