Normalized defining polynomial
\( x^{14} - 812 x^{11} + 8729 x^{10} + 239134 x^{9} + 5865685 x^{8} + 70091666 x^{7} + 733767454 x^{6} + 5616786700 x^{5} + 39308800027 x^{4} + 200176985575 x^{3} + 941525394390 x^{2} + 2923659885741 x + 7775628764171 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-474489902930063357496193840307474416087=-\,7^{25}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $578.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1184,·)$, $\chi_{1421}(1,·)$, $\chi_{1421}(923,·)$, $\chi_{1421}(36,·)$, $\chi_{1421}(993,·)$, $\chi_{1421}(1205,·)$, $\chi_{1421}(1415,·)$, $\chi_{1421}(750,·)$, $\chi_{1421}(1296,·)$, $\chi_{1421}(146,·)$, $\chi_{1421}(83,·)$, $\chi_{1421}(545,·)$, $\chi_{1421}(1147,·)$, $\chi_{1421}(223,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{29} a^{7}$, $\frac{1}{29} a^{8}$, $\frac{1}{29} a^{9}$, $\frac{1}{841} a^{10} + \frac{11}{29} a^{6} + \frac{10}{29} a^{5} - \frac{10}{29} a^{4} + \frac{7}{29} a^{3}$, $\frac{1}{841} a^{11} + \frac{10}{29} a^{6} - \frac{10}{29} a^{5} + \frac{7}{29} a^{4}$, $\frac{1}{24389} a^{12} + \frac{1}{841} a^{9} + \frac{11}{841} a^{8} + \frac{10}{841} a^{7} - \frac{416}{841} a^{6} - \frac{80}{841} a^{5}$, $\frac{1}{2541280357073809278804793349567202819118689370323317740661} a^{13} - \frac{39972097276220982572720100186281608322853653280854174}{2541280357073809278804793349567202819118689370323317740661} a^{12} + \frac{41585925897918151330810013170425396349139326963571246}{87630357140476182027751494812662166176506530011148887609} a^{11} + \frac{10737447681182926676494189881135846362125252782264845}{87630357140476182027751494812662166176506530011148887609} a^{10} - \frac{989995062871455576161717966699935207992573334189059722}{87630357140476182027751494812662166176506530011148887609} a^{9} - \frac{725770893086569442124250285684406857817975844132005712}{87630357140476182027751494812662166176506530011148887609} a^{8} + \frac{1497391535978987409701007201512700513904966431287307141}{87630357140476182027751494812662166176506530011148887609} a^{7} - \frac{33342134865008805009942083246538736929721123804904966383}{87630357140476182027751494812662166176506530011148887609} a^{6} - \frac{28983285220459844055250238529789065790597240220576851281}{87630357140476182027751494812662166176506530011148887609} a^{5} + \frac{511556837798046138251372803197057132618618833908761700}{3021736453119868345784534303884902281948501034867203021} a^{4} - \frac{313915992063962235198168771615699639112236533090506489}{3021736453119868345784534303884902281948501034867203021} a^{3} + \frac{41399233492433513740950057856730517096718398939030445}{104197808728271322268432217375341457998224173616110449} a^{2} - \frac{44880769580970559566386714667709543804112259828117540}{104197808728271322268432217375341457998224173616110449} a + \frac{17269725434396934825496419270820983464603374942721163}{104197808728271322268432217375341457998224173616110449}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{21}\times C_{21}\times C_{21}$, which has order $250047$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59811086.44175506 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.8233120419813614521.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.52 | $x^{14} - 56 x^{13} - 112 x^{12} + 49 x^{11} + 98 x^{10} - 147 x^{9} - 42 x^{7} + 98 x^{6} - 49 x^{5} + 98 x^{4} - 98 x^{3} + 147 x - 84$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |