Normalized defining polynomial
\( x^{14} - 6 x^{13} + 19 x^{12} - 36 x^{11} + 34 x^{10} + 7 x^{9} - 24 x^{8} - 225 x^{7} + 1029 x^{6} + \cdots + 67 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-192993869976848307\)
\(\medspace = -\,3^{7}\cdot 211^{6}\)
|
| |
| Root discriminant: | \(17.17\) |
| |
| Galois root discriminant: | $3^{1/2}211^{6/7}\approx 170.1385518318596$ | ||
| Ramified primes: |
\(3\), \(211\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_7$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{1444405967833}a^{13}+\frac{621688225785}{1444405967833}a^{12}+\frac{94384295695}{1444405967833}a^{11}+\frac{658351238098}{1444405967833}a^{10}+\frac{467387330798}{1444405967833}a^{9}-\frac{81406258017}{1444405967833}a^{8}+\frac{532831883391}{1444405967833}a^{7}+\frac{592862709555}{1444405967833}a^{6}-\frac{37105749872}{1444405967833}a^{5}-\frac{654558370205}{1444405967833}a^{4}+\frac{577293998834}{1444405967833}a^{3}+\frac{446473878815}{1444405967833}a^{2}-\frac{710686450759}{1444405967833}a+\frac{401419802581}{1444405967833}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -\frac{38733090}{192100807} a^{13} + \frac{190683410}{192100807} a^{12} - \frac{525479504}{192100807} a^{11} + \frac{805385401}{192100807} a^{10} - \frac{389326545}{192100807} a^{9} - \frac{777039560}{192100807} a^{8} + \frac{118273147}{192100807} a^{7} + \frac{8941378942}{192100807} a^{6} - \frac{30207258420}{192100807} a^{5} + \frac{53169097819}{192100807} a^{4} - \frac{56945187736}{192100807} a^{3} + \frac{35796523729}{192100807} a^{2} - \frac{11971036180}{192100807} a + \frac{1840720327}{192100807} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{2982040}{192100807}a^{13}-\frac{19765796}{192100807}a^{12}+\frac{63526335}{192100807}a^{11}-\frac{122213114}{192100807}a^{10}+\frac{116581385}{192100807}a^{9}+\frac{34281453}{192100807}a^{8}-\frac{108160545}{192100807}a^{7}-\frac{707712248}{192100807}a^{6}+\frac{3463231541}{192100807}a^{5}-\frac{7634308045}{192100807}a^{4}+\frac{10210841755}{192100807}a^{3}-\frac{8550352951}{192100807}a^{2}+\frac{3966731803}{192100807}a-\frac{754396703}{192100807}$, $\frac{176754946486}{1444405967833}a^{13}-\frac{782425802875}{1444405967833}a^{12}+\frac{2053868264612}{1444405967833}a^{11}-\frac{2851186089368}{1444405967833}a^{10}+\frac{841777854863}{1444405967833}a^{9}+\frac{3374016482668}{1444405967833}a^{8}+\frac{1108910512992}{1444405967833}a^{7}-\frac{39198725349498}{1444405967833}a^{6}+\frac{119015155816555}{1444405967833}a^{5}-\frac{193889262487725}{1444405967833}a^{4}+\frac{192424124865596}{1444405967833}a^{3}-\frac{109119967740478}{1444405967833}a^{2}+\frac{33233383417700}{1444405967833}a-\frac{3825532252732}{1444405967833}$, $\frac{156993000295}{1444405967833}a^{13}-\frac{668956858524}{1444405967833}a^{12}+\frac{1692950292456}{1444405967833}a^{11}-\frac{2182357535223}{1444405967833}a^{10}+\frac{233780302857}{1444405967833}a^{9}+\frac{3168924382569}{1444405967833}a^{8}+\frac{1622508433720}{1444405967833}a^{7}-\frac{34921718467916}{1444405967833}a^{6}+\frac{99235411955837}{1444405967833}a^{5}-\frac{151878639270918}{1444405967833}a^{4}+\frac{136562633632274}{1444405967833}a^{3}-\frac{63479001724634}{1444405967833}a^{2}+\frac{12678220636743}{1444405967833}a-\frac{106659375222}{1444405967833}$, $\frac{9200216549}{1444405967833}a^{13}-\frac{152278697048}{1444405967833}a^{12}+\frac{578439207063}{1444405967833}a^{11}-\frac{1321189408243}{1444405967833}a^{10}+\frac{1508938296315}{1444405967833}a^{9}+\frac{192119306247}{1444405967833}a^{8}-\frac{2282807863336}{1444405967833}a^{7}-\frac{3347583318343}{1444405967833}a^{6}+\frac{31245382177284}{1444405967833}a^{5}-\frac{79501455283027}{1444405967833}a^{4}+\frac{112290015532739}{1444405967833}a^{3}-\frac{91738990182259}{1444405967833}a^{2}+\frac{35232271659422}{1444405967833}a-\frac{4193237857481}{1444405967833}$, $\frac{609337565129}{1444405967833}a^{13}-\frac{2982992868587}{1444405967833}a^{12}+\frac{8253954539077}{1444405967833}a^{11}-\frac{12716329816661}{1444405967833}a^{10}+\frac{6432804346062}{1444405967833}a^{9}+\frac{11613553917427}{1444405967833}a^{8}-\frac{1716250630286}{1444405967833}a^{7}-\frac{139445569287568}{1444405967833}a^{6}+\frac{472343143427220}{1444405967833}a^{5}-\frac{838690661691790}{1444405967833}a^{4}+\frac{911975175457580}{1444405967833}a^{3}-\frac{593134903864795}{1444405967833}a^{2}+\frac{215520427942309}{1444405967833}a-\frac{35357108232296}{1444405967833}$, $\frac{359742798100}{1444405967833}a^{13}-\frac{1758141604781}{1444405967833}a^{12}+\frac{4898148341986}{1444405967833}a^{11}-\frac{7565425470921}{1444405967833}a^{10}+\frac{3948562158791}{1444405967833}a^{9}+\frac{6797240820314}{1444405967833}a^{8}-\frac{1236071923700}{1444405967833}a^{7}-\frac{81989412273952}{1444405967833}a^{6}+\frac{279431949605202}{1444405967833}a^{5}-\frac{499536929758603}{1444405967833}a^{4}+\frac{545976744825027}{1444405967833}a^{3}-\frac{357654714771780}{1444405967833}a^{2}+\frac{128179884255939}{1444405967833}a-\frac{19947207555766}{1444405967833}$
|
| |
| Regulator: | \( 1350.6941155064887 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 1350.6941155064887 \cdot 1}{6\cdot\sqrt{192993869976848307}}\cr\approx \mathstrut & 0.198103924217724 \end{aligned}\]
Galois group
$C_7\times D_7$ (as 14T8):
| A solvable group of order 98 |
| The 35 conjugacy class representatives for $C_7 \wr C_2$ |
| Character table for $C_7 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | deg 14, deg 14 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.14.0.1}{14} }$ | R | ${\href{/padicField/5.14.0.1}{14} }$ | ${\href{/padicField/7.7.0.1}{7} }^{2}$ | ${\href{/padicField/11.14.0.1}{14} }$ | ${\href{/padicField/13.7.0.1}{7} }^{2}$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.7.0.1}{7} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{7}$ | ${\href{/padicField/29.14.0.1}{14} }$ | ${\href{/padicField/31.7.0.1}{7} }^{2}$ | ${\href{/padicField/37.7.0.1}{7} }^{2}$ | ${\href{/padicField/41.14.0.1}{14} }$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{7}$ | ${\href{/padicField/47.14.0.1}{14} }$ | ${\href{/padicField/53.14.0.1}{14} }$ | ${\href{/padicField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.7.2.7a1.2 | $x^{14} + 4 x^{9} + 2 x^{7} + 4 x^{4} + 4 x^{2} + 4$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
|
\(211\)
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | |
| Deg $7$ | $7$ | $1$ | $6$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *98 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *98 | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.211.7t1.a.c | $1$ | $ 211 $ | 7.7.88245939632761.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.211.7t1.a.e | $1$ | $ 211 $ | 7.7.88245939632761.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.211.7t1.a.d | $1$ | $ 211 $ | 7.7.88245939632761.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.633.14t1.a.e | $1$ | $ 3 \cdot 211 $ | 14.0.17030925399469881272195784585627.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.633.14t1.a.a | $1$ | $ 3 \cdot 211 $ | 14.0.17030925399469881272195784585627.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.211.7t1.a.b | $1$ | $ 211 $ | 7.7.88245939632761.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.211.7t1.a.f | $1$ | $ 211 $ | 7.7.88245939632761.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.633.14t1.a.f | $1$ | $ 3 \cdot 211 $ | 14.0.17030925399469881272195784585627.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.633.14t1.a.d | $1$ | $ 3 \cdot 211 $ | 14.0.17030925399469881272195784585627.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.633.14t1.a.c | $1$ | $ 3 \cdot 211 $ | 14.0.17030925399469881272195784585627.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.633.14t1.a.b | $1$ | $ 3 \cdot 211 $ | 14.0.17030925399469881272195784585627.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.211.7t1.a.a | $1$ | $ 211 $ | 7.7.88245939632761.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| *98 | 2.633.14t8.a.f | $2$ | $ 3 \cdot 211 $ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.133563.14t8.a.a | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.14t8.a.f | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.7t2.a.b | $2$ | $ 3 \cdot 211^{2}$ | 7.1.2382640370084547.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.133563.14t8.a.b | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.633.14t8.a.c | $2$ | $ 3 \cdot 211 $ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.133563.14t8.b.e | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.14t8.b.a | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.14t8.a.d | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.7t2.a.c | $2$ | $ 3 \cdot 211^{2}$ | 7.1.2382640370084547.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| *98 | 2.633.14t8.a.b | $2$ | $ 3 \cdot 211 $ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.133563.14t8.b.b | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.14t8.b.c | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.14t8.b.d | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.7t2.a.a | $2$ | $ 3 \cdot 211^{2}$ | 7.1.2382640370084547.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| *98 | 2.633.14t8.a.e | $2$ | $ 3 \cdot 211 $ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.633.14t8.a.a | $2$ | $ 3 \cdot 211 $ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.633.14t8.a.d | $2$ | $ 3 \cdot 211 $ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.133563.14t8.a.c | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.14t8.b.f | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.133563.14t8.a.e | $2$ | $ 3 \cdot 211^{2}$ | 14.0.192993869976848307.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |