Basic invariants
| Dimension: | $2$ |
| Group: | $C_7 \wr C_2$ |
| Conductor: | \(133563\)\(\medspace = 3 \cdot 211^{2} \) |
| Artin stem field: | Galois closure of 14.0.192993869976848307.1 |
| Galois orbit size: | $6$ |
| Smallest permutation container: | $C_7 \wr C_2$ |
| Parity: | odd |
| Determinant: | 1.633.14t1.a.a |
| Projective image: | $D_7$ |
| Projective stem field: | Galois closure of 7.1.2382640370084547.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{14} - 6 x^{13} + 19 x^{12} - 36 x^{11} + 34 x^{10} + 7 x^{9} - 24 x^{8} - 225 x^{7} + 1029 x^{6} + \cdots + 67 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{7} + 6x + 17 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 8 a^{5} + 15 a^{4} + 15 a^{3} + 12 a^{2} + 6 a + 8 + \left(11 a^{6} + 3 a^{5} + 10 a^{3} + 3 a^{2} + 9\right)\cdot 19 + \left(4 a^{6} + a^{5} + 17 a^{4} + 11 a^{3} + 8 a^{2} + 16 a + 9\right)\cdot 19^{2} + \left(14 a^{6} + 9 a^{5} + 7 a^{4} + 17 a^{3} + 10 a^{2} + 13 a + 5\right)\cdot 19^{3} + \left(12 a^{6} + 13 a^{5} + 16 a^{4} + 4 a^{3} + 18 a^{2} + 10 a + 14\right)\cdot 19^{4} + \left(8 a^{6} + 9 a^{5} + 7 a^{4} + 7 a^{3} + 2 a^{2} + 3 a + 11\right)\cdot 19^{5} + \left(2 a^{6} + 18 a^{5} + 12 a^{4} + 2 a^{3} + 17 a + 15\right)\cdot 19^{6} + \left(7 a^{6} + 17 a^{5} + 3 a^{4} + 2 a^{2} + 15 a + 18\right)\cdot 19^{7} + \left(a^{6} + 5 a^{5} + 4 a^{4} + 13 a^{3} + 9 a^{2} + 18 a + 12\right)\cdot 19^{8} + \left(10 a^{6} + 2 a^{5} + 3 a^{4} + 3 a^{3} + 13 a^{2} + 9 a + 12\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 2 }$ | $=$ |
\( 18 a^{5} + 13 a^{4} + 2 a^{3} + 13 a^{2} + 2 a + 8 + \left(4 a^{6} + 7 a^{5} + 8 a^{4} + 13 a^{2} + 11\right)\cdot 19 + \left(16 a^{6} + 12 a^{5} + 6 a^{4} + 13 a^{3} + 3 a^{2} + 16 a + 9\right)\cdot 19^{2} + \left(12 a^{6} + 3 a^{4} + 3 a^{3} + 6 a^{2} + 17 a + 6\right)\cdot 19^{3} + \left(6 a^{6} + 17 a^{5} + 17 a^{4} + 10 a^{3} + 11 a^{2} + 5 a + 18\right)\cdot 19^{4} + \left(3 a^{6} + 5 a^{5} + 10 a^{4} + 4 a^{3} + 12 a^{2} + 15 a + 16\right)\cdot 19^{5} + \left(4 a^{5} + 7 a^{4} + 16 a^{2} + 11 a + 3\right)\cdot 19^{6} + \left(13 a^{6} + 8 a^{5} + 15 a^{4} + 4 a^{3} + 12 a^{2} + 6 a\right)\cdot 19^{7} + \left(4 a^{6} + 14 a^{5} + 14 a^{4} + a^{3} + 18 a^{2} + 10 a + 11\right)\cdot 19^{8} + \left(17 a^{6} + 15 a^{4} + 9 a^{3} + 9 a^{2} + a + 11\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 3 }$ | $=$ |
\( a^{6} + 10 a^{5} + 14 a^{3} + 2 a^{2} + 7 a + 17 + \left(15 a^{6} + 13 a^{5} + 11 a^{4} + 10 a^{3} + 10 a^{2} + 14 a + 7\right)\cdot 19 + \left(12 a^{6} + 3 a^{5} + 17 a^{4} + a^{3} + 8 a^{2} + 5 a + 17\right)\cdot 19^{2} + \left(4 a^{5} + 13 a^{4} + 9 a^{3} + 2 a^{2} + 9 a + 16\right)\cdot 19^{3} + \left(a^{6} + 15 a^{2} + 13 a + 15\right)\cdot 19^{4} + \left(7 a^{5} + 9 a^{4} + 4 a^{3} + 17 a^{2} + 14 a + 16\right)\cdot 19^{5} + \left(2 a^{6} + 4 a^{5} + 4 a^{4} + 18 a^{2} + 15 a + 1\right)\cdot 19^{6} + \left(3 a^{6} + 11 a^{5} + 16 a^{4} + 14 a^{3} + 11 a^{2} + 10 a + 12\right)\cdot 19^{7} + \left(6 a^{6} + 3 a^{5} + 8 a^{4} + 8 a^{3} + 5 a^{2} + 17\right)\cdot 19^{8} + \left(5 a^{6} + 14 a^{5} + 4 a^{3} + 11 a^{2} + 18 a + 14\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 4 }$ | $=$ |
\( 4 a^{6} + 13 a^{5} + 4 a^{4} + 12 a^{3} + 17 a^{2} + 15 + \left(5 a^{6} + 8 a^{5} + 17 a^{4} + 5 a^{3} + 13 a^{2} + 2 a + 6\right)\cdot 19 + \left(9 a^{6} + 16 a^{5} + 14 a^{4} + 15 a^{3} + 10 a^{2} + 16 a + 17\right)\cdot 19^{2} + \left(18 a^{6} + 3 a^{5} + 17 a^{4} + 17 a^{3} + 6 a^{2} + 5 a + 2\right)\cdot 19^{3} + \left(2 a^{6} + 4 a^{5} + 3 a^{4} + 3 a^{3} + 18 a^{2} + 5 a + 10\right)\cdot 19^{4} + \left(14 a^{6} + 5 a^{5} + 17 a^{4} + 7 a^{3} + 14 a^{2} + 15 a + 15\right)\cdot 19^{5} + \left(8 a^{6} + a^{5} + 7 a^{4} + 7 a^{3} + 7 a^{2} + 1\right)\cdot 19^{6} + \left(5 a^{6} + 12 a^{5} + 6 a^{4} + 16 a^{3} + 11 a + 2\right)\cdot 19^{7} + \left(8 a^{6} + 10 a^{5} + 7 a^{4} + 17 a^{3} + 13 a^{2} + 15 a + 5\right)\cdot 19^{8} + \left(17 a^{6} + a^{5} + 10 a^{4} + 5 a^{3} + 4 a^{2} + 6 a + 15\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 5 }$ | $=$ |
\( 8 a^{6} + 3 a^{5} + 4 a^{4} + 16 a^{3} + 12 a^{2} + a + 15 + \left(2 a^{6} + 6 a^{5} + 18 a^{4} + 7 a^{3} + 9 a + 10\right)\cdot 19 + \left(7 a^{6} + 15 a^{5} + 17 a^{4} + 18 a^{3} + 2 a^{2} + 8 a + 4\right)\cdot 19^{2} + \left(5 a^{6} + 2 a^{5} + 3 a^{4} + 2 a^{3} + 2 a^{2} + 12 a + 11\right)\cdot 19^{3} + \left(18 a^{6} + 6 a^{5} + 9 a^{4} + 14 a^{3} + 10 a^{2} + 9\right)\cdot 19^{4} + \left(11 a^{6} + 14 a^{4} + 17 a^{3} + 17 a^{2} + 8 a + 7\right)\cdot 19^{5} + \left(12 a^{6} + 17 a^{5} + 7 a^{4} + 9 a^{3} + 6 a^{2} + 16 a + 10\right)\cdot 19^{6} + \left(8 a^{6} + 4 a^{5} + 18 a^{4} + 6 a^{3} + 13 a^{2} + 9 a + 13\right)\cdot 19^{7} + \left(14 a^{6} + 17 a^{5} + 5 a^{4} + 13 a^{3} + 3 a^{2} + 17 a + 8\right)\cdot 19^{8} + \left(3 a^{6} + a^{5} + 12 a^{4} + 6 a^{2} + 6 a + 1\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 6 }$ | $=$ |
\( 8 a^{6} + 16 a^{5} + 6 a^{4} + 7 a^{3} + 5 a + 15 + \left(7 a^{6} + 6 a^{5} + 14 a^{4} + 18 a^{3} + 14 a^{2} + 18 a + 14\right)\cdot 19 + \left(11 a^{6} + 9 a^{5} + 16 a^{4} + 5 a^{3} + 5 a^{2} + 17 a + 4\right)\cdot 19^{2} + \left(a^{5} + 10 a^{4} + 3 a^{3} + 5 a^{2} + 15 a\right)\cdot 19^{3} + \left(9 a^{6} + 7 a^{5} + 16 a^{4} + 14 a^{3} + 8 a^{2} + 2 a\right)\cdot 19^{4} + \left(10 a^{6} + 16 a^{4} + 7 a^{3} + 6 a^{2} + 17 a + 8\right)\cdot 19^{5} + \left(13 a^{6} + 17 a^{5} + 13 a^{4} + 15 a^{3} + 13 a^{2} + 16 a + 12\right)\cdot 19^{6} + \left(11 a^{6} + 2 a^{5} + 9 a^{4} + 14 a^{3} + 4 a^{2} + 6 a + 15\right)\cdot 19^{7} + \left(5 a^{6} + 17 a^{5} + 10 a^{4} + 8 a^{3} + 2 a^{2} + 14\right)\cdot 19^{8} + \left(13 a^{6} + 13 a^{5} + 18 a^{4} + 12 a^{3} + 12 a^{2} + 4 a + 9\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 7 }$ | $=$ |
\( 11 a^{6} + 9 a^{5} + 15 a^{4} + 11 a^{2} + 7 a + 13 + \left(4 a^{6} + 13 a^{5} + 17 a^{3} + 11 a^{2} + 4 a + 11\right)\cdot 19 + \left(11 a^{6} + 15 a^{5} + 12 a^{3} + 7 a^{2} + 2 a + 16\right)\cdot 19^{2} + \left(8 a^{6} + 16 a^{5} + 6 a^{4} + 14 a^{3} + 16 a^{2} + 10 a\right)\cdot 19^{3} + \left(16 a^{6} + 17 a^{5} + 7 a^{4} + 14 a^{3} + 15 a^{2} + 18 a + 17\right)\cdot 19^{4} + \left(4 a^{6} + 16 a^{5} + 5 a^{4} + 18 a^{3} + 10 a^{2} + a + 13\right)\cdot 19^{5} + \left(10 a^{5} + 10 a^{3} + 2 a^{2} + 8 a + 9\right)\cdot 19^{6} + \left(8 a^{6} + 18 a^{5} + 5 a^{4} + 3 a^{3} + 11 a + 12\right)\cdot 19^{7} + \left(2 a^{6} + 18 a^{5} + 15 a^{4} + 9 a^{3} + 13 a^{2} + 3 a + 15\right)\cdot 19^{8} + \left(18 a^{6} + 18 a^{5} + 3 a^{4} + 15 a^{3} + 2 a^{2} + 6 a + 18\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 8 }$ | $=$ |
\( 11 a^{6} + 13 a^{5} + 7 a^{4} + 12 a^{3} + 4 a^{2} + 2 a + 13 + \left(12 a^{6} + 5 a^{5} + 11 a^{4} + 4 a^{3} + 11 a^{2} + 10 a + 6\right)\cdot 19 + \left(14 a^{6} + 6 a^{5} + 15 a^{4} + 13 a^{3} + 16 a^{2} + 7 a + 4\right)\cdot 19^{2} + \left(18 a^{6} + 16 a^{5} + 13 a^{4} + 10 a^{3} + 13 a^{2} + 2 a + 15\right)\cdot 19^{3} + \left(6 a^{6} + 4 a^{5} + 15 a^{4} + 4 a^{3} + 7 a^{2} + 12 a + 11\right)\cdot 19^{4} + \left(15 a^{6} + 12 a^{5} + 11 a^{4} + 3 a^{3} + 4 a^{2} + 15 a + 13\right)\cdot 19^{5} + \left(9 a^{6} + 15 a^{5} + 12 a^{4} + 10 a^{3} + 9 a^{2} + 4 a + 12\right)\cdot 19^{6} + \left(4 a^{6} + 8 a^{5} + 7 a^{4} + 17 a^{3} + 2 a^{2} + 5 a + 2\right)\cdot 19^{7} + \left(14 a^{6} + 12 a^{5} + 9 a^{4} + 2 a^{3} + a^{2} + 9 a + 3\right)\cdot 19^{8} + \left(18 a^{6} + 2 a^{5} + 13 a^{4} + 3 a^{3} + 14 a^{2} + 7 a + 11\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 9 }$ | $=$ |
\( 12 a^{6} + 12 a^{5} + 2 a^{4} + 2 a^{3} + a^{2} + a + 3 + \left(9 a^{6} + 7 a^{5} + a^{4} + 9 a^{3} + 8 a^{2} + 4 a + 7\right)\cdot 19 + \left(11 a^{6} + 9 a^{5} + 7 a^{4} + 18 a^{3} + 10 a + 5\right)\cdot 19^{2} + \left(17 a^{6} + 8 a^{5} + 18 a^{4} + 15 a^{3} + 18 a^{2} + 14 a + 6\right)\cdot 19^{3} + \left(4 a^{6} + 15 a^{5} + 12 a^{4} + 13 a^{3} + 17 a^{2} + 12 a + 3\right)\cdot 19^{4} + \left(4 a^{6} + 11 a^{5} + 8 a^{4} + 11 a^{3} + 6 a^{2} + 5 a + 3\right)\cdot 19^{5} + \left(6 a^{6} + 6 a^{5} + 13 a^{4} + 14 a^{3} + 12 a^{2} + 18 a + 18\right)\cdot 19^{6} + \left(2 a^{6} + 2 a^{5} + 3 a^{4} + 9 a^{3} + 6 a^{2} + 6 a + 18\right)\cdot 19^{7} + \left(3 a^{6} + 4 a^{5} + 5 a^{4} + 6 a^{3} + 7 a^{2} + 8 a + 1\right)\cdot 19^{8} + \left(9 a^{6} + 15 a^{5} + 6 a^{4} + 2 a^{3} + 4 a^{2} + 4 a + 2\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 10 }$ | $=$ |
\( 13 a^{6} + 16 a^{5} + 17 a^{4} + 12 a^{3} + 9 a^{2} + 4 a + \left(a^{6} + 3 a^{5} + 16 a^{4} + a^{2} + 7\right)\cdot 19 + \left(12 a^{6} + 8 a^{5} + 14 a^{4} + 2 a^{3} + 16 a^{2} + 15 a + 8\right)\cdot 19^{2} + \left(7 a^{6} + 7 a^{5} + 10 a^{4} + 12 a^{3} + 5 a^{2} + 6 a + 17\right)\cdot 19^{3} + \left(13 a^{6} + 11 a^{5} + a^{4} + 2 a^{3} + 6 a^{2} + 12 a + 8\right)\cdot 19^{4} + \left(a^{6} + 13 a^{5} + 15 a^{4} + 18 a^{3} + 13 a^{2} + 12 a + 14\right)\cdot 19^{5} + \left(14 a^{6} + 2 a^{5} + 17 a^{4} + 2 a^{3} + 15 a^{2} + 8 a + 9\right)\cdot 19^{6} + \left(11 a^{6} + a^{5} + 18 a^{4} + 18 a^{3} + 5 a^{2} + 15 a + 18\right)\cdot 19^{7} + \left(7 a^{6} + 14 a^{5} + a^{4} + 8 a^{3} + 15 a^{2} + a + 16\right)\cdot 19^{8} + \left(a^{6} + 7 a^{5} + 10 a^{4} + 7 a^{3} + 9 a^{2} + 16 a + 2\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 11 }$ | $=$ |
\( 15 a^{6} + 8 a^{5} + a^{4} + 10 a^{3} + 2 a^{2} + 16 a + 1 + \left(17 a^{6} + 7 a^{5} + 4 a^{3} + 13 a^{2} + 2 a + 9\right)\cdot 19 + \left(13 a^{6} + 16 a^{5} + 9 a^{4} + 4 a^{3} + 4 a + 11\right)\cdot 19^{2} + \left(2 a^{6} + 17 a^{5} + 17 a^{4} + 8 a^{3} + 9 a^{2} + 10 a\right)\cdot 19^{3} + \left(4 a^{6} + 12 a^{5} + 15 a^{4} + 9 a^{3} + 7 a^{2} + 2 a + 8\right)\cdot 19^{4} + \left(14 a^{6} + 11 a^{5} + 10 a^{4} + 4 a^{2} + 16 a + 10\right)\cdot 19^{5} + \left(11 a^{6} + 2 a^{5} + 3 a^{4} + 14 a^{3} + a^{2} + 2 a + 14\right)\cdot 19^{6} + \left(17 a^{6} + 17 a^{5} + 3 a^{4} + 15 a^{3} + 15 a^{2} + a + 15\right)\cdot 19^{7} + \left(3 a^{6} + 13 a^{5} + 9 a^{4} + 4 a^{3} + 8 a^{2} + 15 a + 9\right)\cdot 19^{8} + \left(4 a^{6} + 16 a^{5} + 11 a^{4} + a^{3} + 9 a^{2} + 7 a + 1\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 12 }$ | $=$ |
\( 16 a^{6} + 7 a^{5} + 2 a^{4} + 6 a^{3} + 17 a^{2} + 5 a + 17 + \left(a^{6} + 10 a^{5} + 18 a^{4} + 14 a^{3} + 8 a^{2} + 18 a + 13\right)\cdot 19 + \left(6 a^{6} + 7 a^{5} + 12 a^{4} + 5 a^{3} + 9 a^{2} + 13 a + 3\right)\cdot 19^{2} + \left(11 a^{5} + 9 a^{4} + 3 a^{3} + 13 a^{2} + 15 a + 7\right)\cdot 19^{3} + \left(7 a^{6} + 5 a^{5} + 18 a^{4} + 9 a^{3} + 15 a^{2} + a + 17\right)\cdot 19^{4} + \left(15 a^{6} + 14 a^{5} + 11 a^{4} + 15 a^{3} + 6 a^{2} + 8 a + 10\right)\cdot 19^{5} + \left(4 a^{6} + 3 a^{5} + 12 a^{4} + 11 a^{3} + 11 a\right)\cdot 19^{6} + \left(a^{6} + 12 a^{5} + 15 a^{4} + 18 a^{3} + 5 a^{2} + 5 a + 13\right)\cdot 19^{7} + \left(3 a^{6} + 18 a^{5} + 15 a^{4} + 7 a^{3} + 12 a^{2} + 3 a + 2\right)\cdot 19^{8} + \left(9 a^{6} + 13 a^{5} + 17 a^{4} + 18 a^{3} + 2 a^{2} + 17 a + 16\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 13 }$ | $=$ |
\( 17 a^{6} + 14 a^{4} + 3 a^{3} + 3 a^{2} + 6 a + 7 + \left(17 a^{6} + 8 a^{5} + 4 a^{4} + 14 a^{3} + 17 a^{2} + 2 a + 14\right)\cdot 19 + \left(16 a^{6} + 8 a^{5} + 10 a^{4} + 9 a^{3} + 2 a^{2} + 4 a\right)\cdot 19^{2} + \left(15 a^{6} + 3 a^{5} + a^{4} + 17 a^{3} + a^{2} + 18 a + 11\right)\cdot 19^{3} + \left(18 a^{6} + 5 a^{5} + 9 a^{4} + 8 a^{3} + 3 a^{2} + 14 a + 1\right)\cdot 19^{4} + \left(6 a^{6} + 7 a^{5} + 14 a^{4} + 16 a^{3} + 10 a^{2} + 12 a + 9\right)\cdot 19^{5} + \left(6 a^{6} + 11 a^{5} + 15 a^{4} + 3 a^{3} + 5 a^{2} + 16 a + 13\right)\cdot 19^{6} + \left(11 a^{6} + 14 a^{5} + 7 a^{4} + a^{3} + 4 a^{2} + 13 a + 13\right)\cdot 19^{7} + \left(6 a^{6} + 7 a^{5} + 14 a^{4} + 5 a^{3} + 13 a^{2} + 10 a + 11\right)\cdot 19^{8} + \left(2 a^{5} + 15 a^{4} + 17 a^{3} + 2 a^{2} + a + 5\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 14 }$ | $=$ |
\( 17 a^{6} + 14 a^{4} + 3 a^{3} + 11 a^{2} + 14 a + 7 + \left(2 a^{6} + 11 a^{5} + 9 a^{4} + 15 a^{3} + 5 a^{2} + 8 a + 2\right)\cdot 19 + \left(4 a^{6} + 2 a^{5} + 10 a^{4} + 2 a^{2} + 14 a\right)\cdot 19^{2} + \left(9 a^{6} + 10 a^{5} + 16 a^{4} + 15 a^{3} + 3 a^{2} + 17 a + 12\right)\cdot 19^{3} + \left(10 a^{6} + 11 a^{5} + 6 a^{4} + 2 a^{3} + 15 a^{2} + 18 a + 15\right)\cdot 19^{4} + \left(2 a^{6} + 16 a^{5} + 16 a^{4} + 3 a^{2} + 4 a + 18\right)\cdot 19^{5} + \left(2 a^{6} + 16 a^{5} + 2 a^{4} + 10 a^{3} + 3 a^{2} + 2 a + 7\right)\cdot 19^{6} + \left(8 a^{6} + a^{4} + 11 a^{3} + 10 a^{2} + 12 a + 13\right)\cdot 19^{7} + \left(13 a^{6} + 12 a^{5} + 10 a^{4} + 5 a^{3} + 9 a^{2} + 17 a\right)\cdot 19^{8} + \left(4 a^{6} + a^{5} + 12 a^{4} + 12 a^{3} + 10 a^{2} + 5 a + 9\right)\cdot 19^{9} +O(19^{10})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 14 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 14 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $7$ | $2$ | $(1,14)(2,5)(3,11)(4,6)(7,13)(8,9)(10,12)$ | $0$ | ✓ |
| $1$ | $7$ | $(1,12,8,4,2,11,7)(3,13,14,10,9,6,5)$ | $2 \zeta_{7}^{4}$ | |
| $1$ | $7$ | $(1,8,2,7,12,4,11)(3,14,9,5,13,10,6)$ | $2 \zeta_{7}$ | |
| $1$ | $7$ | $(1,4,7,8,11,12,2)(3,10,5,14,6,13,9)$ | $2 \zeta_{7}^{5}$ | |
| $1$ | $7$ | $(1,2,12,11,8,7,4)(3,9,13,6,14,5,10)$ | $2 \zeta_{7}^{2}$ | |
| $1$ | $7$ | $(1,11,4,12,7,2,8)(3,6,10,13,5,9,14)$ | $-2 \zeta_{7}^{5} - 2 \zeta_{7}^{4} - 2 \zeta_{7}^{3} - 2 \zeta_{7}^{2} - 2 \zeta_{7} - 2$ | |
| $1$ | $7$ | $(1,7,11,2,4,8,12)(3,5,6,9,10,14,13)$ | $2 \zeta_{7}^{3}$ | |
| $2$ | $7$ | $(3,14,9,5,13,10,6)$ | $\zeta_{7}^{5} + \zeta_{7}^{3}$ | |
| $2$ | $7$ | $(3,9,13,6,14,5,10)$ | $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$ | |
| $2$ | $7$ | $(3,5,6,9,10,14,13)$ | $\zeta_{7}^{2} + \zeta_{7}$ | |
| $2$ | $7$ | $(3,13,14,10,9,6,5)$ | $-\zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - \zeta_{7} - 1$ | |
| $2$ | $7$ | $(3,10,5,14,6,13,9)$ | $\zeta_{7}^{4} + \zeta_{7}$ | |
| $2$ | $7$ | $(3,6,10,13,5,9,14)$ | $\zeta_{7}^{4} + \zeta_{7}^{2}$ | |
| $2$ | $7$ | $(1,8,2,7,12,4,11)(3,9,13,6,14,5,10)$ | $-\zeta_{7}^{5} - \zeta_{7}^{3} - \zeta_{7}^{2} - \zeta_{7} - 1$ | |
| $2$ | $7$ | $(1,2,12,11,8,7,4)(3,13,14,10,9,6,5)$ | $\zeta_{7}^{5} + \zeta_{7}$ | |
| $2$ | $7$ | $(1,7,11,2,4,8,12)(3,6,10,13,5,9,14)$ | $\zeta_{7}^{5} + \zeta_{7}^{4}$ | |
| $2$ | $7$ | $(1,12,8,4,2,11,7)(3,14,9,5,13,10,6)$ | $\zeta_{7}^{3} + \zeta_{7}^{2}$ | |
| $2$ | $7$ | $(1,4,7,8,11,12,2)(3,5,6,9,10,14,13)$ | $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7} - 1$ | |
| $2$ | $7$ | $(1,11,4,12,7,2,8)(3,10,5,14,6,13,9)$ | $\zeta_{7}^{3} + \zeta_{7}$ | |
| $2$ | $7$ | $(1,12,8,4,2,11,7)(3,10,5,14,6,13,9)$ | $\zeta_{7}^{2} + 1$ | |
| $2$ | $7$ | $(1,8,2,7,12,4,11)(3,5,6,9,10,14,13)$ | $\zeta_{7}^{4} + 1$ | |
| $2$ | $7$ | $(1,4,7,8,11,12,2)(3,14,9,5,13,10,6)$ | $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - \zeta_{7}$ | |
| $2$ | $7$ | $(1,2,12,11,8,7,4)(3,6,10,13,5,9,14)$ | $\zeta_{7} + 1$ | |
| $2$ | $7$ | $(1,11,4,12,7,2,8)(3,13,14,10,9,6,5)$ | $\zeta_{7}^{3} + 1$ | |
| $2$ | $7$ | $(1,7,11,2,4,8,12)(3,9,13,6,14,5,10)$ | $\zeta_{7}^{5} + 1$ | |
| $2$ | $7$ | $(1,7,11,2,4,8,12)(3,13,14,10,9,6,5)$ | $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$ | |
| $2$ | $7$ | $(1,11,4,12,7,2,8)(3,14,9,5,13,10,6)$ | $\zeta_{7}^{5} + \zeta_{7}^{2}$ | |
| $2$ | $7$ | $(1,2,12,11,8,7,4)(3,10,5,14,6,13,9)$ | $\zeta_{7}^{4} + \zeta_{7}^{3}$ | |
| $7$ | $14$ | $(1,5,12,3,8,13,4,14,2,10,11,9,7,6)$ | $0$ | |
| $7$ | $14$ | $(1,3,4,10,7,5,8,14,11,6,12,13,2,9)$ | $0$ | |
| $7$ | $14$ | $(1,13,11,5,4,9,12,14,7,3,2,6,8,10)$ | $0$ | |
| $7$ | $14$ | $(1,10,8,6,2,3,7,14,12,9,4,5,11,13)$ | $0$ | |
| $7$ | $14$ | $(1,9,2,13,12,6,11,14,8,5,7,10,4,3)$ | $0$ | |
| $7$ | $14$ | $(1,6,7,9,11,10,2,14,4,13,8,3,12,5)$ | $0$ |