Properties

Label 14.0.13256859160936448.1
Degree $14$
Signature $[0, 7]$
Discriminant $-1.326\times 10^{16}$
Root discriminant \(14.18\)
Ramified primes $2,43$
Class number $1$
Class group trivial
Galois group $C_7 \wr C_2$ (as 14T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^14 - 2*x^13 + 5*x^12 - 6*x^11 + 5*x^10 - 6*x^9 + 6*x^8 - 12*x^7 + 22*x^6 + 2*x^5 + 7*x^4 + 28*x^3 + 2*x^2 - 4*x + 1)
 
Copy content gp:K = bnfinit(y^14 - 2*y^13 + 5*y^12 - 6*y^11 + 5*y^10 - 6*y^9 + 6*y^8 - 12*y^7 + 22*y^6 + 2*y^5 + 7*y^4 + 28*y^3 + 2*y^2 - 4*y + 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 2*x^13 + 5*x^12 - 6*x^11 + 5*x^10 - 6*x^9 + 6*x^8 - 12*x^7 + 22*x^6 + 2*x^5 + 7*x^4 + 28*x^3 + 2*x^2 - 4*x + 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^14 - 2*x^13 + 5*x^12 - 6*x^11 + 5*x^10 - 6*x^9 + 6*x^8 - 12*x^7 + 22*x^6 + 2*x^5 + 7*x^4 + 28*x^3 + 2*x^2 - 4*x + 1)
 

\( x^{14} - 2 x^{13} + 5 x^{12} - 6 x^{11} + 5 x^{10} - 6 x^{9} + 6 x^{8} - 12 x^{7} + 22 x^{6} + 2 x^{5} + \cdots + 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $14$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 7]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-13256859160936448\) \(\medspace = -\,2^{21}\cdot 43^{6}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(14.18\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}43^{6/7}\approx 71.06582671110044$
Ramified primes:   \(2\), \(43\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-2}) \)
$\Aut(K/\Q)$:   $C_7$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-2}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7}a^{10}+\frac{1}{7}a^{9}-\frac{3}{7}a^{8}-\frac{1}{7}a^{7}+\frac{2}{7}a^{6}-\frac{3}{7}a^{5}-\frac{2}{7}a^{4}-\frac{3}{7}a^{3}-\frac{2}{7}a^{2}-\frac{1}{7}a-\frac{3}{7}$, $\frac{1}{7}a^{11}+\frac{3}{7}a^{9}+\frac{2}{7}a^{8}+\frac{3}{7}a^{7}+\frac{2}{7}a^{6}+\frac{1}{7}a^{5}-\frac{1}{7}a^{4}+\frac{1}{7}a^{3}+\frac{1}{7}a^{2}-\frac{2}{7}a+\frac{3}{7}$, $\frac{1}{7}a^{12}-\frac{1}{7}a^{9}-\frac{2}{7}a^{8}-\frac{2}{7}a^{7}+\frac{2}{7}a^{6}+\frac{1}{7}a^{5}+\frac{3}{7}a^{3}-\frac{3}{7}a^{2}-\frac{1}{7}a+\frac{2}{7}$, $\frac{1}{4067}a^{13}+\frac{193}{4067}a^{12}-\frac{125}{4067}a^{11}+\frac{3}{581}a^{10}+\frac{614}{4067}a^{9}-\frac{543}{4067}a^{8}+\frac{444}{4067}a^{7}-\frac{1163}{4067}a^{6}-\frac{173}{4067}a^{5}-\frac{5}{581}a^{4}+\frac{22}{581}a^{3}+\frac{61}{581}a^{2}+\frac{184}{4067}a-\frac{146}{4067}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $6$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{1748}{4067}a^{13}-\frac{3102}{4067}a^{12}+\frac{7509}{4067}a^{11}-\frac{1147}{581}a^{10}+\frac{5394}{4067}a^{9}-\frac{7363}{4067}a^{8}+\frac{8030}{4067}a^{7}-\frac{16854}{4067}a^{6}+\frac{30509}{4067}a^{5}+\frac{281}{83}a^{4}+\frac{940}{581}a^{3}+\frac{6530}{581}a^{2}+\frac{10797}{4067}a-\frac{5959}{4067}$, $\frac{429}{4067}a^{13}-\frac{286}{4067}a^{12}+\frac{408}{4067}a^{11}+\frac{208}{581}a^{10}-\frac{3273}{4067}a^{9}+\frac{2939}{4067}a^{8}-\frac{2416}{4067}a^{7}+\frac{1314}{4067}a^{6}-\frac{3335}{4067}a^{5}+\frac{2752}{581}a^{4}-\frac{688}{581}a^{3}+\frac{1933}{581}a^{2}+\frac{20836}{4067}a+\frac{695}{4067}$, $\frac{1053}{4067}a^{13}-\frac{1283}{4067}a^{12}+\frac{4329}{4067}a^{11}-\frac{410}{581}a^{10}+\frac{1632}{4067}a^{9}-\frac{2980}{4067}a^{8}-\frac{173}{4067}a^{7}-\frac{8606}{4067}a^{6}+\frac{15371}{4067}a^{5}+\frac{398}{83}a^{4}+\frac{2250}{581}a^{3}+\frac{7046}{581}a^{2}+\frac{25262}{4067}a+\frac{1389}{4067}$, $\frac{1147}{4067}a^{13}-\frac{2895}{4067}a^{12}+\frac{6523}{4067}a^{11}-\frac{208}{83}a^{10}+\frac{9963}{4067}a^{9}-\frac{11609}{4067}a^{8}+\frac{14256}{4067}a^{7}-\frac{17996}{4067}a^{6}+\frac{33388}{4067}a^{5}-\frac{2249}{581}a^{4}+\frac{1247}{581}a^{3}+\frac{1492}{581}a^{2}-\frac{17285}{4067}a-\frac{2458}{4067}$, $\frac{1172}{4067}a^{13}-\frac{2137}{4067}a^{12}+\frac{5722}{4067}a^{11}-\frac{138}{83}a^{10}+\frac{6721}{4067}a^{9}-\frac{8916}{4067}a^{8}+\frac{9088}{4067}a^{7}-\frac{16278}{4067}a^{6}+\frac{26739}{4067}a^{5}-\frac{50}{581}a^{4}+\frac{2627}{581}a^{3}+\frac{4262}{581}a^{2}+\frac{12298}{4067}a+\frac{4350}{4067}$, $\frac{823}{4067}a^{13}-\frac{2098}{4067}a^{12}+\frac{5191}{4067}a^{11}-\frac{169}{83}a^{10}+\frac{9148}{4067}a^{9}-\frac{11139}{4067}a^{8}+\frac{12164}{4067}a^{7}-\frac{15929}{4067}a^{6}+\frac{27854}{4067}a^{5}-\frac{2372}{581}a^{4}+\frac{2253}{581}a^{3}+\frac{105}{83}a^{2}-\frac{8343}{4067}a-\frac{472}{4067}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 135.44305525773999 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 135.44305525773999 \cdot 1}{2\cdot\sqrt{13256859160936448}}\cr\approx \mathstrut & 0.227386932743024 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^14 - 2*x^13 + 5*x^12 - 6*x^11 + 5*x^10 - 6*x^9 + 6*x^8 - 12*x^7 + 22*x^6 + 2*x^5 + 7*x^4 + 28*x^3 + 2*x^2 - 4*x + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^14 - 2*x^13 + 5*x^12 - 6*x^11 + 5*x^10 - 6*x^9 + 6*x^8 - 12*x^7 + 22*x^6 + 2*x^5 + 7*x^4 + 28*x^3 + 2*x^2 - 4*x + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 2*x^13 + 5*x^12 - 6*x^11 + 5*x^10 - 6*x^9 + 6*x^8 - 12*x^7 + 22*x^6 + 2*x^5 + 7*x^4 + 28*x^3 + 2*x^2 - 4*x + 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^14 - 2*x^13 + 5*x^12 - 6*x^11 + 5*x^10 - 6*x^9 + 6*x^8 - 12*x^7 + 22*x^6 + 2*x^5 + 7*x^4 + 28*x^3 + 2*x^2 - 4*x + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_7\times D_7$ (as 14T8):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 98
The 35 conjugacy class representatives for $C_7 \wr C_2$
Character table for $C_7 \wr C_2$

Intermediate fields

\(\Q(\sqrt{-2}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 14 siblings: deg 14, deg 14
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.7.0.1}{7} }^{2}$ ${\href{/padicField/5.14.0.1}{14} }$ ${\href{/padicField/7.2.0.1}{2} }^{7}$ ${\href{/padicField/11.7.0.1}{7} }^{2}$ ${\href{/padicField/13.14.0.1}{14} }$ ${\href{/padicField/17.7.0.1}{7} }^{2}$ ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{7}$ ${\href{/padicField/23.14.0.1}{14} }$ ${\href{/padicField/29.14.0.1}{14} }$ ${\href{/padicField/31.14.0.1}{14} }$ ${\href{/padicField/37.2.0.1}{2} }^{7}$ ${\href{/padicField/41.7.0.1}{7} }^{2}$ R ${\href{/padicField/47.14.0.1}{14} }$ ${\href{/padicField/53.14.0.1}{14} }$ ${\href{/padicField/59.7.0.1}{7} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.7.2.21a1.1$x^{14} + 2 x^{8} + 2 x^{7} + x^{2} + 2 x + 3$$2$$7$$21$$C_{14}$$$[3]^{7}$$
\(43\) Copy content Toggle raw display 43.7.1.0a1.1$x^{7} + 42 x^{2} + 7 x + 40$$1$$7$$0$$C_7$$$[\ ]^{7}$$
43.1.7.6a1.6$x^{7} + 1634$$7$$1$$6$$C_7$$$[\ ]_{7}$$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
*98 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
*98 1.8.2t1.b.a$1$ $ 2^{3}$ \(\Q(\sqrt{-2}) \) $C_2$ (as 2T1) $1$ $-1$
1.344.14t1.a.e$1$ $ 2^{3} \cdot 43 $ 14.0.83801419645740806624509952.1 $C_{14}$ (as 14T1) $0$ $-1$
1.344.14t1.a.f$1$ $ 2^{3} \cdot 43 $ 14.0.83801419645740806624509952.1 $C_{14}$ (as 14T1) $0$ $-1$
1.43.7t1.a.d$1$ $ 43 $ 7.7.6321363049.1 $C_7$ (as 7T1) $0$ $1$
1.344.14t1.a.b$1$ $ 2^{3} \cdot 43 $ 14.0.83801419645740806624509952.1 $C_{14}$ (as 14T1) $0$ $-1$
1.43.7t1.a.e$1$ $ 43 $ 7.7.6321363049.1 $C_7$ (as 7T1) $0$ $1$
1.344.14t1.a.c$1$ $ 2^{3} \cdot 43 $ 14.0.83801419645740806624509952.1 $C_{14}$ (as 14T1) $0$ $-1$
1.43.7t1.a.b$1$ $ 43 $ 7.7.6321363049.1 $C_7$ (as 7T1) $0$ $1$
1.43.7t1.a.c$1$ $ 43 $ 7.7.6321363049.1 $C_7$ (as 7T1) $0$ $1$
1.43.7t1.a.a$1$ $ 43 $ 7.7.6321363049.1 $C_7$ (as 7T1) $0$ $1$
1.344.14t1.a.a$1$ $ 2^{3} \cdot 43 $ 14.0.83801419645740806624509952.1 $C_{14}$ (as 14T1) $0$ $-1$
1.43.7t1.a.f$1$ $ 43 $ 7.7.6321363049.1 $C_7$ (as 7T1) $0$ $1$
1.344.14t1.a.d$1$ $ 2^{3} \cdot 43 $ 14.0.83801419645740806624509952.1 $C_{14}$ (as 14T1) $0$ $-1$
2.14792.14t8.a.b$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.a.a$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
*98 2.344.14t8.a.e$2$ $ 2^{3} \cdot 43 $ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
*98 2.344.14t8.a.f$2$ $ 2^{3} \cdot 43 $ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.b.e$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.b.a$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.7t2.a.c$2$ $ 2^{3} \cdot 43^{2}$ 7.1.3236537881088.1 $D_{7}$ (as 7T2) $1$ $0$
*98 2.344.14t8.a.d$2$ $ 2^{3} \cdot 43 $ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.b.d$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.7t2.a.a$2$ $ 2^{3} \cdot 43^{2}$ 7.1.3236537881088.1 $D_{7}$ (as 7T2) $1$ $0$
2.14792.14t8.a.e$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.a.f$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.7t2.a.b$2$ $ 2^{3} \cdot 43^{2}$ 7.1.3236537881088.1 $D_{7}$ (as 7T2) $1$ $0$
*98 2.344.14t8.a.a$2$ $ 2^{3} \cdot 43 $ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
*98 2.344.14t8.a.c$2$ $ 2^{3} \cdot 43 $ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.a.c$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.b.b$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.b.f$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
*98 2.344.14t8.a.b$2$ $ 2^{3} \cdot 43 $ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.a.d$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$
2.14792.14t8.b.c$2$ $ 2^{3} \cdot 43^{2}$ 14.0.13256859160936448.1 $C_7 \wr C_2$ (as 14T8) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)