Normalized defining polynomial
\( x^{14} - 2 x^{13} + 5 x^{12} - 6 x^{11} + 5 x^{10} - 6 x^{9} + 6 x^{8} - 12 x^{7} + 22 x^{6} + 2 x^{5} + \cdots + 1 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-13256859160936448\)
\(\medspace = -\,2^{21}\cdot 43^{6}\)
|
| |
| Root discriminant: | \(14.18\) |
| |
| Galois root discriminant: | $2^{3/2}43^{6/7}\approx 71.06582671110044$ | ||
| Ramified primes: |
\(2\), \(43\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
| $\Aut(K/\Q)$: | $C_7$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7}a^{10}+\frac{1}{7}a^{9}-\frac{3}{7}a^{8}-\frac{1}{7}a^{7}+\frac{2}{7}a^{6}-\frac{3}{7}a^{5}-\frac{2}{7}a^{4}-\frac{3}{7}a^{3}-\frac{2}{7}a^{2}-\frac{1}{7}a-\frac{3}{7}$, $\frac{1}{7}a^{11}+\frac{3}{7}a^{9}+\frac{2}{7}a^{8}+\frac{3}{7}a^{7}+\frac{2}{7}a^{6}+\frac{1}{7}a^{5}-\frac{1}{7}a^{4}+\frac{1}{7}a^{3}+\frac{1}{7}a^{2}-\frac{2}{7}a+\frac{3}{7}$, $\frac{1}{7}a^{12}-\frac{1}{7}a^{9}-\frac{2}{7}a^{8}-\frac{2}{7}a^{7}+\frac{2}{7}a^{6}+\frac{1}{7}a^{5}+\frac{3}{7}a^{3}-\frac{3}{7}a^{2}-\frac{1}{7}a+\frac{2}{7}$, $\frac{1}{4067}a^{13}+\frac{193}{4067}a^{12}-\frac{125}{4067}a^{11}+\frac{3}{581}a^{10}+\frac{614}{4067}a^{9}-\frac{543}{4067}a^{8}+\frac{444}{4067}a^{7}-\frac{1163}{4067}a^{6}-\frac{173}{4067}a^{5}-\frac{5}{581}a^{4}+\frac{22}{581}a^{3}+\frac{61}{581}a^{2}+\frac{184}{4067}a-\frac{146}{4067}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1748}{4067}a^{13}-\frac{3102}{4067}a^{12}+\frac{7509}{4067}a^{11}-\frac{1147}{581}a^{10}+\frac{5394}{4067}a^{9}-\frac{7363}{4067}a^{8}+\frac{8030}{4067}a^{7}-\frac{16854}{4067}a^{6}+\frac{30509}{4067}a^{5}+\frac{281}{83}a^{4}+\frac{940}{581}a^{3}+\frac{6530}{581}a^{2}+\frac{10797}{4067}a-\frac{5959}{4067}$, $\frac{429}{4067}a^{13}-\frac{286}{4067}a^{12}+\frac{408}{4067}a^{11}+\frac{208}{581}a^{10}-\frac{3273}{4067}a^{9}+\frac{2939}{4067}a^{8}-\frac{2416}{4067}a^{7}+\frac{1314}{4067}a^{6}-\frac{3335}{4067}a^{5}+\frac{2752}{581}a^{4}-\frac{688}{581}a^{3}+\frac{1933}{581}a^{2}+\frac{20836}{4067}a+\frac{695}{4067}$, $\frac{1053}{4067}a^{13}-\frac{1283}{4067}a^{12}+\frac{4329}{4067}a^{11}-\frac{410}{581}a^{10}+\frac{1632}{4067}a^{9}-\frac{2980}{4067}a^{8}-\frac{173}{4067}a^{7}-\frac{8606}{4067}a^{6}+\frac{15371}{4067}a^{5}+\frac{398}{83}a^{4}+\frac{2250}{581}a^{3}+\frac{7046}{581}a^{2}+\frac{25262}{4067}a+\frac{1389}{4067}$, $\frac{1147}{4067}a^{13}-\frac{2895}{4067}a^{12}+\frac{6523}{4067}a^{11}-\frac{208}{83}a^{10}+\frac{9963}{4067}a^{9}-\frac{11609}{4067}a^{8}+\frac{14256}{4067}a^{7}-\frac{17996}{4067}a^{6}+\frac{33388}{4067}a^{5}-\frac{2249}{581}a^{4}+\frac{1247}{581}a^{3}+\frac{1492}{581}a^{2}-\frac{17285}{4067}a-\frac{2458}{4067}$, $\frac{1172}{4067}a^{13}-\frac{2137}{4067}a^{12}+\frac{5722}{4067}a^{11}-\frac{138}{83}a^{10}+\frac{6721}{4067}a^{9}-\frac{8916}{4067}a^{8}+\frac{9088}{4067}a^{7}-\frac{16278}{4067}a^{6}+\frac{26739}{4067}a^{5}-\frac{50}{581}a^{4}+\frac{2627}{581}a^{3}+\frac{4262}{581}a^{2}+\frac{12298}{4067}a+\frac{4350}{4067}$, $\frac{823}{4067}a^{13}-\frac{2098}{4067}a^{12}+\frac{5191}{4067}a^{11}-\frac{169}{83}a^{10}+\frac{9148}{4067}a^{9}-\frac{11139}{4067}a^{8}+\frac{12164}{4067}a^{7}-\frac{15929}{4067}a^{6}+\frac{27854}{4067}a^{5}-\frac{2372}{581}a^{4}+\frac{2253}{581}a^{3}+\frac{105}{83}a^{2}-\frac{8343}{4067}a-\frac{472}{4067}$
|
| |
| Regulator: | \( 135.44305525773999 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 135.44305525773999 \cdot 1}{2\cdot\sqrt{13256859160936448}}\cr\approx \mathstrut & 0.227386932743024 \end{aligned}\]
Galois group
$C_7\times D_7$ (as 14T8):
| A solvable group of order 98 |
| The 35 conjugacy class representatives for $C_7 \wr C_2$ |
| Character table for $C_7 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | deg 14, deg 14 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }^{2}$ | ${\href{/padicField/5.14.0.1}{14} }$ | ${\href{/padicField/7.2.0.1}{2} }^{7}$ | ${\href{/padicField/11.7.0.1}{7} }^{2}$ | ${\href{/padicField/13.14.0.1}{14} }$ | ${\href{/padicField/17.7.0.1}{7} }^{2}$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{7}$ | ${\href{/padicField/23.14.0.1}{14} }$ | ${\href{/padicField/29.14.0.1}{14} }$ | ${\href{/padicField/31.14.0.1}{14} }$ | ${\href{/padicField/37.2.0.1}{2} }^{7}$ | ${\href{/padicField/41.7.0.1}{7} }^{2}$ | R | ${\href{/padicField/47.14.0.1}{14} }$ | ${\href{/padicField/53.14.0.1}{14} }$ | ${\href{/padicField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.7.2.21a1.1 | $x^{14} + 2 x^{8} + 2 x^{7} + x^{2} + 2 x + 3$ | $2$ | $7$ | $21$ | $C_{14}$ | $$[3]^{7}$$ |
|
\(43\)
| 43.7.1.0a1.1 | $x^{7} + 42 x^{2} + 7 x + 40$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ |
| 43.1.7.6a1.6 | $x^{7} + 1634$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *98 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *98 | 1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.344.14t1.a.e | $1$ | $ 2^{3} \cdot 43 $ | 14.0.83801419645740806624509952.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.344.14t1.a.f | $1$ | $ 2^{3} \cdot 43 $ | 14.0.83801419645740806624509952.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.43.7t1.a.d | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.344.14t1.a.b | $1$ | $ 2^{3} \cdot 43 $ | 14.0.83801419645740806624509952.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.43.7t1.a.e | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.344.14t1.a.c | $1$ | $ 2^{3} \cdot 43 $ | 14.0.83801419645740806624509952.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.43.7t1.a.b | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.c | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.a | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.344.14t1.a.a | $1$ | $ 2^{3} \cdot 43 $ | 14.0.83801419645740806624509952.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.43.7t1.a.f | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.344.14t1.a.d | $1$ | $ 2^{3} \cdot 43 $ | 14.0.83801419645740806624509952.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 2.14792.14t8.a.b | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.14792.14t8.a.a | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.344.14t8.a.e | $2$ | $ 2^{3} \cdot 43 $ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.344.14t8.a.f | $2$ | $ 2^{3} \cdot 43 $ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.14792.14t8.b.e | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.14792.14t8.b.a | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.14792.7t2.a.c | $2$ | $ 2^{3} \cdot 43^{2}$ | 7.1.3236537881088.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| *98 | 2.344.14t8.a.d | $2$ | $ 2^{3} \cdot 43 $ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.14792.14t8.b.d | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.14792.7t2.a.a | $2$ | $ 2^{3} \cdot 43^{2}$ | 7.1.3236537881088.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.14792.14t8.a.e | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.14792.14t8.a.f | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.14792.7t2.a.b | $2$ | $ 2^{3} \cdot 43^{2}$ | 7.1.3236537881088.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| *98 | 2.344.14t8.a.a | $2$ | $ 2^{3} \cdot 43 $ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.344.14t8.a.c | $2$ | $ 2^{3} \cdot 43 $ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.14792.14t8.a.c | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.14792.14t8.b.b | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.14792.14t8.b.f | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.344.14t8.a.b | $2$ | $ 2^{3} \cdot 43 $ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.14792.14t8.a.d | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.14792.14t8.b.c | $2$ | $ 2^{3} \cdot 43^{2}$ | 14.0.13256859160936448.1 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |