Normalized defining polynomial
\( x^{14} - x^{13} + 5 x^{12} - 7 x^{11} + 26 x^{10} - 35 x^{9} + 55 x^{8} - 71 x^{7} + 119 x^{6} + \cdots + 25 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-105496092121152103\)
\(\medspace = -\,7^{7}\cdot 71^{6}\)
|
| |
| Root discriminant: | \(16.44\) |
| |
| Galois root discriminant: | $7^{1/2}71^{6/7}\approx 102.17435159642903$ | ||
| Ramified primes: |
\(7\), \(71\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_7$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-7}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5}a^{10}+\frac{2}{5}a^{9}+\frac{1}{5}a^{8}-\frac{1}{5}a^{7}-\frac{1}{5}a^{6}+\frac{2}{5}a^{4}+\frac{2}{5}a^{3}-\frac{1}{5}a$, $\frac{1}{5}a^{11}+\frac{2}{5}a^{9}+\frac{2}{5}a^{8}+\frac{1}{5}a^{7}+\frac{2}{5}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a$, $\frac{1}{5}a^{12}-\frac{2}{5}a^{9}-\frac{1}{5}a^{8}-\frac{1}{5}a^{7}-\frac{1}{5}a^{6}-\frac{2}{5}a^{5}+\frac{2}{5}a^{4}+\frac{2}{5}a^{2}+\frac{2}{5}a$, $\frac{1}{361193405}a^{13}+\frac{2288841}{72238681}a^{12}+\frac{5458604}{72238681}a^{11}+\frac{6807611}{72238681}a^{10}-\frac{122107467}{361193405}a^{9}-\frac{180392074}{361193405}a^{8}-\frac{95091813}{361193405}a^{7}+\frac{148841101}{361193405}a^{6}+\frac{133245562}{361193405}a^{5}+\frac{19905269}{361193405}a^{4}+\frac{13902411}{361193405}a^{3}+\frac{44650667}{361193405}a^{2}+\frac{140852563}{361193405}a+\frac{8772177}{72238681}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{31539927}{361193405}a^{13}+\frac{7537453}{361193405}a^{12}+\frac{113564853}{361193405}a^{11}-\frac{10095215}{72238681}a^{10}+\frac{566011496}{361193405}a^{9}-\frac{32176497}{72238681}a^{8}+\frac{463737124}{361193405}a^{7}-\frac{118598167}{72238681}a^{6}+\frac{1765825429}{361193405}a^{5}-\frac{1558852842}{361193405}a^{4}+\frac{223950352}{72238681}a^{3}-\frac{366348258}{361193405}a^{2}-\frac{164673582}{361193405}a+\frac{35174484}{72238681}$, $\frac{13234186}{361193405}a^{13}-\frac{14128298}{361193405}a^{12}+\frac{57597577}{361193405}a^{11}-\frac{88270251}{361193405}a^{10}+\frac{305768571}{361193405}a^{9}-\frac{425475513}{361193405}a^{8}+\frac{530945768}{361193405}a^{7}-\frac{679943996}{361193405}a^{6}+\frac{1225669452}{361193405}a^{5}-\frac{1826573813}{361193405}a^{4}+\frac{2396383546}{361193405}a^{3}-\frac{1729514841}{361193405}a^{2}+\frac{710145142}{361193405}a+\frac{4968252}{72238681}$, $\frac{27995743}{361193405}a^{13}-\frac{564886}{72238681}a^{12}+\frac{123516947}{361193405}a^{11}-\frac{100140496}{361193405}a^{10}+\frac{578048531}{361193405}a^{9}-\frac{486774294}{361193405}a^{8}+\frac{859087954}{361193405}a^{7}-\frac{1341151607}{361193405}a^{6}+\frac{383511371}{72238681}a^{5}-\frac{3077099444}{361193405}a^{4}+\frac{3288298408}{361193405}a^{3}-\frac{3046546766}{361193405}a^{2}+\frac{1668883419}{361193405}a-\frac{162903985}{72238681}$, $\frac{21733182}{361193405}a^{13}-\frac{16630267}{361193405}a^{12}+\frac{16144574}{72238681}a^{11}-\frac{128547863}{361193405}a^{10}+\frac{436826779}{361193405}a^{9}-\frac{579394964}{361193405}a^{8}+\frac{573004444}{361193405}a^{7}-\frac{1051895438}{361193405}a^{6}+\frac{1718449378}{361193405}a^{5}-\frac{2647520427}{361193405}a^{4}+\frac{2744626786}{361193405}a^{3}-\frac{473542564}{72238681}a^{2}+\frac{194302673}{72238681}a-\frac{23148997}{72238681}$, $\frac{131489}{12454945}a^{13}+\frac{544257}{12454945}a^{12}+\frac{283863}{2490989}a^{11}+\frac{2620892}{12454945}a^{10}+\frac{5420587}{12454945}a^{9}+\frac{9943109}{12454945}a^{8}+\frac{14304844}{12454945}a^{7}+\frac{2352420}{2490989}a^{6}+\frac{14354054}{12454945}a^{5}+\frac{9390384}{12454945}a^{4}+\frac{4333318}{12454945}a^{3}-\frac{204673}{12454945}a^{2}+\frac{4639549}{12454945}a-\frac{201930}{2490989}$, $\frac{27995743}{361193405}a^{13}-\frac{564886}{72238681}a^{12}+\frac{123516947}{361193405}a^{11}-\frac{100140496}{361193405}a^{10}+\frac{578048531}{361193405}a^{9}-\frac{486774294}{361193405}a^{8}+\frac{859087954}{361193405}a^{7}-\frac{1341151607}{361193405}a^{6}+\frac{383511371}{72238681}a^{5}-\frac{3077099444}{361193405}a^{4}+\frac{3288298408}{361193405}a^{3}-\frac{3046546766}{361193405}a^{2}+\frac{2030076824}{361193405}a-\frac{162903985}{72238681}$
|
| |
| Regulator: | \( 421.3378894575585 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 421.3378894575585 \cdot 1}{2\cdot\sqrt{105496092121152103}}\cr\approx \mathstrut & 0.250750271611099 \end{aligned}\]
Galois group
$C_7\times D_7$ (as 14T8):
| A solvable group of order 98 |
| The 35 conjugacy class representatives for $C_7 \wr C_2$ |
| Character table for $C_7 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | deg 14, deg 14 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}$ | ${\href{/padicField/3.14.0.1}{14} }$ | ${\href{/padicField/5.2.0.1}{2} }^{7}$ | R | ${\href{/padicField/11.7.0.1}{7} }^{2}$ | ${\href{/padicField/13.14.0.1}{14} }$ | ${\href{/padicField/17.2.0.1}{2} }^{7}$ | ${\href{/padicField/19.14.0.1}{14} }$ | ${\href{/padicField/23.7.0.1}{7} }^{2}$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{7}$ | ${\href{/padicField/31.14.0.1}{14} }$ | ${\href{/padicField/37.7.0.1}{7} }^{2}$ | ${\href{/padicField/41.14.0.1}{14} }$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{7}$ | ${\href{/padicField/47.14.0.1}{14} }$ | ${\href{/padicField/53.7.0.1}{7} }^{2}$ | ${\href{/padicField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.7.2.7a1.2 | $x^{14} + 12 x^{8} + 8 x^{7} + 36 x^{2} + 48 x + 23$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
|
\(71\)
| 71.7.1.0a1.1 | $x^{7} + 2 x + 64$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ |
| 71.1.7.6a1.6 | $x^{7} + 4118$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *98 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *98 | 1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.497.14t1.a.e | $1$ | $ 7 \cdot 71 $ | 14.0.13514079353275555523926235863.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.71.7t1.a.c | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.71.7t1.a.b | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.71.7t1.a.d | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.497.14t1.a.b | $1$ | $ 7 \cdot 71 $ | 14.0.13514079353275555523926235863.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.71.7t1.a.f | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.71.7t1.a.a | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.497.14t1.a.a | $1$ | $ 7 \cdot 71 $ | 14.0.13514079353275555523926235863.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.497.14t1.a.c | $1$ | $ 7 \cdot 71 $ | 14.0.13514079353275555523926235863.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.71.7t1.a.e | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.497.14t1.a.f | $1$ | $ 7 \cdot 71 $ | 14.0.13514079353275555523926235863.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 1.497.14t1.a.d | $1$ | $ 7 \cdot 71 $ | 14.0.13514079353275555523926235863.1 | $C_{14}$ (as 14T1) | $0$ | $-1$ | |
| 2.35287.7t2.a.b | $2$ | $ 7 \cdot 71^{2}$ | 7.1.43938397384903.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| 2.35287.14t8.a.c | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.35287.14t8.b.e | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.497.14t8.a.b | $2$ | $ 7 \cdot 71 $ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.35287.14t8.b.f | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.35287.14t8.b.b | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.35287.14t8.b.c | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.497.14t8.a.d | $2$ | $ 7 \cdot 71 $ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.35287.7t2.a.c | $2$ | $ 7 \cdot 71^{2}$ | 7.1.43938397384903.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| *98 | 2.497.14t8.a.f | $2$ | $ 7 \cdot 71 $ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| *98 | 2.497.14t8.a.e | $2$ | $ 7 \cdot 71 $ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.35287.14t8.a.e | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.35287.14t8.a.a | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| *98 | 2.497.14t8.a.c | $2$ | $ 7 \cdot 71 $ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.35287.14t8.b.a | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.35287.14t8.a.b | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.35287.14t8.a.f | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.35287.14t8.b.d | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ | |
| 2.35287.7t2.a.a | $2$ | $ 7 \cdot 71^{2}$ | 7.1.43938397384903.1 | $D_{7}$ (as 7T2) | $1$ | $0$ | |
| *98 | 2.497.14t8.a.a | $2$ | $ 7 \cdot 71 $ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |
| 2.35287.14t8.a.d | $2$ | $ 7 \cdot 71^{2}$ | 14.0.105496092121152103.2 | $C_7 \wr C_2$ (as 14T8) | $0$ | $0$ |