Normalized defining polynomial
\( x^{13} - x^{12} + 15 x^{11} - 34 x^{10} + 93 x^{9} - 251 x^{8} + 394 x^{7} - 405 x^{6} + 245 x^{5} + \cdots + 374 \)
Invariants
| Degree: | $13$ |
| |
| Signature: | $[1, 6]$ |
| |
| Discriminant: |
\(48095468356445867449\)
\(\medspace = 1907^{6}\)
|
| |
| Root discriminant: | \(32.66\) |
| |
| Galois root discriminant: | $1907^{1/2}\approx 43.669211121796096$ | ||
| Ramified primes: |
\(1907\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{7}-\frac{1}{2}a^{3}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{8}a^{8}-\frac{1}{8}a^{7}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{8}a^{2}-\frac{1}{8}a+\frac{1}{4}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{7}-\frac{1}{4}a^{5}+\frac{1}{8}a^{3}-\frac{1}{4}a^{2}+\frac{1}{8}a+\frac{1}{4}$, $\frac{1}{16}a^{10}+\frac{1}{16}a^{7}-\frac{1}{8}a^{6}-\frac{1}{16}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}+\frac{7}{16}a+\frac{3}{8}$, $\frac{1}{800}a^{11}+\frac{3}{800}a^{10}+\frac{9}{200}a^{9}+\frac{37}{800}a^{8}+\frac{13}{160}a^{7}+\frac{21}{400}a^{6}+\frac{47}{800}a^{5}-\frac{39}{800}a^{4}+\frac{39}{100}a^{3}+\frac{59}{800}a^{2}+\frac{47}{160}a-\frac{143}{400}$, $\frac{1}{6335420800}a^{12}-\frac{476131}{791927600}a^{11}+\frac{32328983}{6335420800}a^{10}+\frac{35401901}{6335420800}a^{9}-\frac{97718111}{3167710400}a^{8}-\frac{95148473}{6335420800}a^{7}+\frac{311378581}{1267084160}a^{6}+\frac{283402191}{1583855200}a^{5}+\frac{845594001}{6335420800}a^{4}-\frac{67292787}{333443200}a^{3}+\frac{1119002513}{3167710400}a^{2}+\frac{2746542529}{6335420800}a+\frac{123143293}{3167710400}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{31}{10112}a^{12}-\frac{3}{3160}a^{11}+\frac{2141}{50560}a^{10}-\frac{3633}{50560}a^{9}+\frac{4767}{25280}a^{8}-\frac{5575}{10112}a^{7}+\frac{27699}{50560}a^{6}-\frac{2569}{12640}a^{5}-\frac{18533}{50560}a^{4}+\frac{20029}{50560}a^{3}-\frac{36681}{25280}a^{2}+\frac{3391}{10112}a+\frac{2719}{25280}$, $\frac{11520159}{6335420800}a^{12}-\frac{446777}{791927600}a^{11}+\frac{33910669}{1267084160}a^{10}-\frac{49658393}{1267084160}a^{9}+\frac{439497447}{3167710400}a^{8}-\frac{1995120367}{6335420800}a^{7}+\frac{2863837767}{6335420800}a^{6}-\frac{530047743}{1583855200}a^{5}+\frac{94380107}{1267084160}a^{4}+\frac{5745447}{66688640}a^{3}-\frac{707162761}{3167710400}a^{2}-\frac{1303019129}{6335420800}a+\frac{212892299}{3167710400}$, $\frac{72784009}{6335420800}a^{12}-\frac{10809559}{791927600}a^{11}+\frac{923303927}{6335420800}a^{10}-\frac{2867889931}{6335420800}a^{9}+\frac{2218821561}{3167710400}a^{8}-\frac{18644534457}{6335420800}a^{7}+\frac{4385751213}{1267084160}a^{6}-\frac{2652416801}{1583855200}a^{5}+\frac{17928325169}{6335420800}a^{4}+\frac{1281545397}{333443200}a^{3}-\frac{18208608663}{3167710400}a^{2}+\frac{4190808961}{6335420800}a-\frac{15882856643}{3167710400}$, $\frac{99172937}{6335420800}a^{12}-\frac{40490323}{791927600}a^{11}+\frac{1519290447}{6335420800}a^{10}-\frac{6182631051}{6335420800}a^{9}+\frac{1389306629}{633542080}a^{8}-\frac{34598445121}{6335420800}a^{7}+\frac{69499755249}{6335420800}a^{6}-\frac{15848335177}{1583855200}a^{5}-\frac{13524518951}{6335420800}a^{4}+\frac{3953754197}{333443200}a^{3}-\frac{6427042731}{633542080}a^{2}+\frac{64830865993}{6335420800}a-\frac{5114179423}{633542080}$, $\frac{87297}{98990950}a^{12}-\frac{5026337}{1583855200}a^{11}+\frac{24236193}{1583855200}a^{10}-\frac{5828489}{98990950}a^{9}+\frac{236745439}{1583855200}a^{8}-\frac{569149861}{1583855200}a^{7}+\frac{597123319}{791927600}a^{6}-\frac{1287217799}{1583855200}a^{5}+\frac{173401051}{1583855200}a^{4}+\frac{11026627}{20840200}a^{3}-\frac{1590696567}{1583855200}a^{2}+\frac{2166101873}{1583855200}a-\frac{535978301}{791927600}$, $\frac{11969851}{3167710400}a^{12}-\frac{546253}{791927600}a^{11}+\frac{126888541}{3167710400}a^{10}-\frac{258784753}{3167710400}a^{9}+\frac{24554181}{316771040}a^{8}-\frac{1258048883}{3167710400}a^{7}+\frac{488018867}{3167710400}a^{6}+\frac{144974283}{98990950}a^{5}-\frac{5159654853}{3167710400}a^{4}-\frac{220244609}{166721600}a^{3}+\frac{100832469}{63354208}a^{2}+\frac{3051297739}{3167710400}a+\frac{150804299}{316771040}$
|
| |
| Regulator: | \( 333391.286353 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{6}\cdot 333391.286353 \cdot 1}{2\cdot\sqrt{48095468356445867449}}\cr\approx \mathstrut & 2.95788561815 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 26 |
| The 8 conjugacy class representatives for $D_{13}$ |
| Character table for $D_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | deg 26 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{6}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.13.0.1}{13} }$ | ${\href{/padicField/5.2.0.1}{2} }^{6}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.13.0.1}{13} }$ | ${\href{/padicField/11.2.0.1}{2} }^{6}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.13.0.1}{13} }$ | ${\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.2.0.1}{2} }^{6}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.13.0.1}{13} }$ | ${\href{/padicField/29.13.0.1}{13} }$ | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.2.0.1}{2} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.13.0.1}{13} }$ | ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.13.0.1}{13} }$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(1907\)
| $\Q_{1907}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |