Normalized defining polynomial
\( x^{13} - 3 x^{12} + 18 x^{10} - 6 x^{9} - 56 x^{8} + 152 x^{7} + 128 x^{6} + 256 x^{5} - 106 x^{4} + \cdots - 5 \)
Invariants
| Degree: | $13$ |
| |
| Signature: | $[1, 6]$ |
| |
| Discriminant: |
\(4114466594579445832729\)
\(\medspace = 4003^{6}\)
|
| |
| Root discriminant: | \(45.99\) |
| |
| Galois root discriminant: | $4003^{1/2}\approx 63.26926584053272$ | ||
| Ramified primes: |
\(4003\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}-\frac{1}{4}$, $\frac{1}{12}a^{7}+\frac{1}{12}a^{6}-\frac{1}{6}a^{5}-\frac{1}{6}a^{4}-\frac{1}{6}a^{3}-\frac{1}{6}a^{2}+\frac{1}{12}a+\frac{1}{12}$, $\frac{1}{12}a^{8}+\frac{1}{4}a^{2}-\frac{1}{3}$, $\frac{1}{24}a^{9}-\frac{1}{8}a^{6}+\frac{1}{8}a^{3}+\frac{1}{3}a-\frac{3}{8}$, $\frac{1}{48}a^{10}-\frac{1}{48}a^{9}-\frac{1}{48}a^{7}+\frac{5}{48}a^{6}+\frac{1}{6}a^{5}+\frac{11}{48}a^{4}+\frac{5}{48}a^{3}-\frac{1}{6}a^{2}+\frac{7}{16}a+\frac{23}{48}$, $\frac{1}{432}a^{11}-\frac{1}{108}a^{10}-\frac{1}{432}a^{9}+\frac{1}{144}a^{8}-\frac{1}{108}a^{7}+\frac{41}{432}a^{6}+\frac{59}{432}a^{5}-\frac{25}{108}a^{4}-\frac{11}{432}a^{3}-\frac{23}{48}a^{2}-\frac{5}{12}a+\frac{179}{432}$, $\frac{1}{107136}a^{12}-\frac{19}{53568}a^{11}+\frac{5}{5952}a^{10}-\frac{101}{26784}a^{9}+\frac{2107}{53568}a^{8}+\frac{85}{17856}a^{7}-\frac{1751}{17856}a^{6}+\frac{1367}{5952}a^{5}+\frac{6127}{53568}a^{4}-\frac{2035}{26784}a^{3}+\frac{603}{1984}a^{2}+\frac{9301}{53568}a-\frac{46199}{107136}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{45011}{107136}a^{12}-\frac{77977}{53568}a^{11}+\frac{3551}{53568}a^{10}+\frac{29165}{2976}a^{9}-\frac{413167}{53568}a^{8}-\frac{1829131}{53568}a^{7}+\frac{5068793}{53568}a^{6}+\frac{3013421}{53568}a^{5}-\frac{3684587}{53568}a^{4}-\frac{516319}{8928}a^{3}-\frac{55501}{5952}a^{2}-\frac{64729}{53568}a-\frac{13079}{35712}$, $\frac{97}{6696}a^{12}-\frac{245}{6696}a^{11}-\frac{97}{2232}a^{10}+\frac{433}{1674}a^{9}+\frac{23}{6696}a^{8}-\frac{2513}{2232}a^{7}+\frac{1583}{1116}a^{6}+\frac{6551}{2232}a^{5}+\frac{22883}{6696}a^{4}+\frac{1625}{1674}a^{3}-\frac{5647}{744}a^{2}-\frac{21661}{6696}a-\frac{4283}{6696}$, $\frac{28873}{53568}a^{12}-\frac{16847}{8928}a^{11}+\frac{2369}{26784}a^{10}+\frac{42911}{3348}a^{9}-\frac{280283}{26784}a^{8}-\frac{1201693}{26784}a^{7}+\frac{3339617}{26784}a^{6}+\frac{1932833}{26784}a^{5}-\frac{953015}{8928}a^{4}-\frac{61085}{837}a^{3}+\frac{287}{2976}a^{2}+\frac{121873}{26784}a+\frac{10277}{53568}$, $\frac{509}{11904}a^{12}-\frac{7555}{53568}a^{11}+\frac{5389}{53568}a^{10}+\frac{19307}{26784}a^{9}-\frac{15415}{17856}a^{8}-\frac{110657}{53568}a^{7}+\frac{498175}{53568}a^{6}+\frac{276703}{53568}a^{5}+\frac{623983}{53568}a^{4}-\frac{279635}{26784}a^{3}-\frac{100207}{5952}a^{2}-\frac{15859}{5952}a-\frac{26659}{107136}$, $\frac{43}{6696}a^{12}+\frac{17}{1116}a^{11}-\frac{1121}{6696}a^{10}+\frac{1327}{3348}a^{9}+\frac{214}{837}a^{8}-\frac{11519}{6696}a^{7}+\frac{2159}{837}a^{6}+\frac{6617}{3348}a^{5}+\frac{3577}{744}a^{4}+\frac{977}{3348}a^{3}-\frac{773}{93}a^{2}-\frac{19537}{6696}a-\frac{139}{6696}$, $\frac{3247}{53568}a^{12}-\frac{641}{2976}a^{11}+\frac{2771}{26784}a^{10}+\frac{14045}{13392}a^{9}-\frac{23831}{26784}a^{8}-\frac{80935}{26784}a^{7}+\frac{290117}{26784}a^{6}+\frac{76013}{26784}a^{5}+\frac{130715}{8928}a^{4}-\frac{185189}{13392}a^{3}-\frac{47797}{2976}a^{2}-\frac{36557}{26784}a+\frac{28871}{53568}$
|
| |
| Regulator: | \( 7222649.14775 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{6}\cdot 7222649.14775 \cdot 1}{2\cdot\sqrt{4114466594579445832729}}\cr\approx \mathstrut & 6.92817674773 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 26 |
| The 8 conjugacy class representatives for $D_{13}$ |
| Character table for $D_{13}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | deg 26 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{6}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.2.0.1}{2} }^{6}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.2.0.1}{2} }^{6}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.13.0.1}{13} }$ | ${\href{/padicField/11.13.0.1}{13} }$ | ${\href{/padicField/13.13.0.1}{13} }$ | ${\href{/padicField/17.13.0.1}{13} }$ | ${\href{/padicField/19.13.0.1}{13} }$ | ${\href{/padicField/23.2.0.1}{2} }^{6}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.13.0.1}{13} }$ | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.13.0.1}{13} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.13.0.1}{13} }$ | ${\href{/padicField/59.13.0.1}{13} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(4003\)
| $\Q_{4003}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |