Normalized defining polynomial
\( x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} - 9 x^{8} - 36 x^{7} + 116 x^{6} - 174 x^{5} + 134 x^{4} + \cdots - 4 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{55/24}17^{11/12}\approx 65.73125404566245$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{7}$, $\frac{1}{102556510406}a^{11}+\frac{6462637583}{51278255203}a^{10}+\frac{18507822553}{102556510406}a^{9}+\frac{5503383148}{51278255203}a^{8}+\frac{10378115441}{102556510406}a^{7}-\frac{14421540230}{51278255203}a^{6}-\frac{61435789}{403765789}a^{5}+\frac{191083478}{51278255203}a^{4}-\frac{13663026652}{51278255203}a^{3}-\frac{24507776156}{51278255203}a^{2}-\frac{340954538}{2698855537}a+\frac{12747442137}{51278255203}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{2156597924}{51278255203}a^{11}-\frac{7122302696}{51278255203}a^{10}+\frac{23323254914}{51278255203}a^{9}-\frac{32058366503}{51278255203}a^{8}-\frac{38325439245}{51278255203}a^{7}-\frac{109792814009}{51278255203}a^{6}+\frac{1371385597}{403765789}a^{5}-\frac{266365831598}{51278255203}a^{4}+\frac{110378943949}{51278255203}a^{3}-\frac{348929425280}{51278255203}a^{2}+\frac{1790537998}{2698855537}a+\frac{8230423917}{51278255203}$, $\frac{4976904581}{51278255203}a^{11}-\frac{20369279019}{51278255203}a^{10}+\frac{133925114157}{102556510406}a^{9}-\frac{234714343525}{102556510406}a^{8}-\frac{58071375093}{102556510406}a^{7}-\frac{185261153935}{51278255203}a^{6}+\frac{4647236693}{403765789}a^{5}-\frac{927210331151}{51278255203}a^{4}+\frac{809999780647}{51278255203}a^{3}-\frac{982118768654}{51278255203}a^{2}+\frac{35213332949}{2698855537}a-\frac{88418111885}{51278255203}$, $\frac{6754078643}{102556510406}a^{11}-\frac{13298705968}{51278255203}a^{10}+\frac{42144854912}{51278255203}a^{9}-\frac{139061541489}{102556510406}a^{8}-\frac{42240937380}{51278255203}a^{7}-\frac{118273992182}{51278255203}a^{6}+\frac{3228754997}{403765789}a^{5}-\frac{492643646545}{51278255203}a^{4}+\frac{417503378886}{51278255203}a^{3}-\frac{537065000610}{51278255203}a^{2}+\frac{13840519878}{2698855537}a+\frac{76128348273}{51278255203}$, $\frac{3558586006}{51278255203}a^{11}-\frac{12640858443}{51278255203}a^{10}+\frac{79739203821}{102556510406}a^{9}-\frac{119371522677}{102556510406}a^{8}-\frac{124569516709}{102556510406}a^{7}-\frac{158804599388}{51278255203}a^{6}+\frac{2902783711}{403765789}a^{5}-\frac{366493704253}{51278255203}a^{4}+\frac{374840904811}{51278255203}a^{3}-\frac{457561840488}{51278255203}a^{2}+\frac{7171938831}{2698855537}a+\frac{21724362643}{51278255203}$, $\frac{14277853066}{51278255203}a^{11}-\frac{106866654533}{102556510406}a^{10}+\frac{169929653610}{51278255203}a^{9}-\frac{262974148688}{51278255203}a^{8}-\frac{435492478097}{102556510406}a^{7}-\frac{541092179346}{51278255203}a^{6}+\frac{12361191636}{403765789}a^{5}-\frac{2055319408888}{51278255203}a^{4}+\frac{1134420632432}{51278255203}a^{3}-\frac{1943006712373}{51278255203}a^{2}+\frac{57572559511}{2698855537}a+\frac{246113838893}{51278255203}$, $\frac{15797673723}{102556510406}a^{11}-\frac{61120782939}{102556510406}a^{10}+\frac{199320639711}{102556510406}a^{9}-\frac{164914721423}{51278255203}a^{8}-\frac{79928635679}{51278255203}a^{7}-\frac{315348647412}{51278255203}a^{6}+\frac{6750538650}{403765789}a^{5}-\frac{1270578433808}{51278255203}a^{4}+\frac{1031928706391}{51278255203}a^{3}-\frac{1461895560269}{51278255203}a^{2}+\frac{37863195224}{2698855537}a+\frac{155227043941}{51278255203}$, $\frac{790026372}{51278255203}a^{11}+\frac{332178395}{102556510406}a^{10}-\frac{801643957}{102556510406}a^{9}+\frac{29404847539}{102556510406}a^{8}-\frac{44554384474}{51278255203}a^{7}-\frac{122826044183}{51278255203}a^{6}-\frac{374831052}{403765789}a^{5}+\frac{170876412699}{51278255203}a^{4}-\frac{144522535893}{51278255203}a^{3}-\frac{94812497400}{51278255203}a^{2}+\frac{5769320994}{2698855537}a-\frac{7224619509}{51278255203}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 86961.9671975 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 86961.9671975 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 1.02316289221 \end{aligned}\]
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.561510749104259072.6 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | R | ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{6}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.6.2 | $x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
2.6.8.4 | $x^{6} + 2 x^{4} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |