Properties

Label 12.4.449...576.4
Degree 1212
Signature [4,4][4, 4]
Discriminant 4.492×10184.492\times 10^{18}
Root discriminant 35.8435.84
Ramified primes 2,172,17
Class number 22
Class group [2]
Galois group S42:D4S_4^2:D_4 (as 12T260)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 - 36*x^7 + 116*x^6 - 174*x^5 + 134*x^4 - 176*x^3 + 106*x^2 + 8*x - 4)
 
gp: K = bnfinit(y^12 - 4*y^11 + 13*y^10 - 22*y^9 - 9*y^8 - 36*y^7 + 116*y^6 - 174*y^5 + 134*y^4 - 176*y^3 + 106*y^2 + 8*y - 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 - 36*x^7 + 116*x^6 - 174*x^5 + 134*x^4 - 176*x^3 + 106*x^2 + 8*x - 4);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 - 36*x^7 + 116*x^6 - 174*x^5 + 134*x^4 - 176*x^3 + 106*x^2 + 8*x - 4)
 

x124x11+13x1022x99x836x7+116x6174x5+134x4+4 x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} - 9 x^{8} - 36 x^{7} + 116 x^{6} - 174 x^{5} + 134 x^{4} + \cdots - 4 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  1212
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [4,4][4, 4]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   44920859928340725764492085992834072576 =2171711\medspace = 2^{17}\cdot 17^{11} Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  35.8435.84
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  255/241711/1265.731254045662452^{55/24}17^{11/12}\approx 65.73125404566245
Ramified primes:   22, 1717 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(34)\Q(\sqrt{34})
#Aut(K/Q)\card{ \Aut(K/\Q) }:  22
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, 12a812a712a6\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}, 12a912a6\frac{1}{2}a^{9}-\frac{1}{2}a^{6}, 12a1012a7\frac{1}{2}a^{10}-\frac{1}{2}a^{7}, 1102556510406a11+646263758351278255203a10+18507822553102556510406a9+550338314851278255203a8+10378115441102556510406a71442154023051278255203a661435789403765789a5+19108347851278255203a41366302665251278255203a32450777615651278255203a23409545382698855537a+1274744213751278255203\frac{1}{102556510406}a^{11}+\frac{6462637583}{51278255203}a^{10}+\frac{18507822553}{102556510406}a^{9}+\frac{5503383148}{51278255203}a^{8}+\frac{10378115441}{102556510406}a^{7}-\frac{14421540230}{51278255203}a^{6}-\frac{61435789}{403765789}a^{5}+\frac{191083478}{51278255203}a^{4}-\frac{13663026652}{51278255203}a^{3}-\frac{24507776156}{51278255203}a^{2}-\frac{340954538}{2698855537}a+\frac{12747442137}{51278255203} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

C2C_{2}, which has order 22

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  77
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   215659792451278255203a11712230269651278255203a10+2332325491451278255203a93205836650351278255203a83832543924551278255203a710979281400951278255203a6+1371385597403765789a526636583159851278255203a4+11037894394951278255203a334892942528051278255203a2+17905379982698855537a+823042391751278255203\frac{2156597924}{51278255203}a^{11}-\frac{7122302696}{51278255203}a^{10}+\frac{23323254914}{51278255203}a^{9}-\frac{32058366503}{51278255203}a^{8}-\frac{38325439245}{51278255203}a^{7}-\frac{109792814009}{51278255203}a^{6}+\frac{1371385597}{403765789}a^{5}-\frac{266365831598}{51278255203}a^{4}+\frac{110378943949}{51278255203}a^{3}-\frac{348929425280}{51278255203}a^{2}+\frac{1790537998}{2698855537}a+\frac{8230423917}{51278255203}, 497690458151278255203a112036927901951278255203a10+133925114157102556510406a9234714343525102556510406a858071375093102556510406a718526115393551278255203a6+4647236693403765789a592721033115151278255203a4+80999978064751278255203a398211876865451278255203a2+352133329492698855537a8841811188551278255203\frac{4976904581}{51278255203}a^{11}-\frac{20369279019}{51278255203}a^{10}+\frac{133925114157}{102556510406}a^{9}-\frac{234714343525}{102556510406}a^{8}-\frac{58071375093}{102556510406}a^{7}-\frac{185261153935}{51278255203}a^{6}+\frac{4647236693}{403765789}a^{5}-\frac{927210331151}{51278255203}a^{4}+\frac{809999780647}{51278255203}a^{3}-\frac{982118768654}{51278255203}a^{2}+\frac{35213332949}{2698855537}a-\frac{88418111885}{51278255203}, 6754078643102556510406a111329870596851278255203a10+4214485491251278255203a9139061541489102556510406a84224093738051278255203a711827399218251278255203a6+3228754997403765789a549264364654551278255203a4+41750337888651278255203a353706500061051278255203a2+138405198782698855537a+7612834827351278255203\frac{6754078643}{102556510406}a^{11}-\frac{13298705968}{51278255203}a^{10}+\frac{42144854912}{51278255203}a^{9}-\frac{139061541489}{102556510406}a^{8}-\frac{42240937380}{51278255203}a^{7}-\frac{118273992182}{51278255203}a^{6}+\frac{3228754997}{403765789}a^{5}-\frac{492643646545}{51278255203}a^{4}+\frac{417503378886}{51278255203}a^{3}-\frac{537065000610}{51278255203}a^{2}+\frac{13840519878}{2698855537}a+\frac{76128348273}{51278255203}, 355858600651278255203a111264085844351278255203a10+79739203821102556510406a9119371522677102556510406a8124569516709102556510406a715880459938851278255203a6+2902783711403765789a536649370425351278255203a4+37484090481151278255203a345756184048851278255203a2+71719388312698855537a+2172436264351278255203\frac{3558586006}{51278255203}a^{11}-\frac{12640858443}{51278255203}a^{10}+\frac{79739203821}{102556510406}a^{9}-\frac{119371522677}{102556510406}a^{8}-\frac{124569516709}{102556510406}a^{7}-\frac{158804599388}{51278255203}a^{6}+\frac{2902783711}{403765789}a^{5}-\frac{366493704253}{51278255203}a^{4}+\frac{374840904811}{51278255203}a^{3}-\frac{457561840488}{51278255203}a^{2}+\frac{7171938831}{2698855537}a+\frac{21724362643}{51278255203}, 1427785306651278255203a11106866654533102556510406a10+16992965361051278255203a926297414868851278255203a8435492478097102556510406a754109217934651278255203a6+12361191636403765789a5205531940888851278255203a4+113442063243251278255203a3194300671237351278255203a2+575725595112698855537a+24611383889351278255203\frac{14277853066}{51278255203}a^{11}-\frac{106866654533}{102556510406}a^{10}+\frac{169929653610}{51278255203}a^{9}-\frac{262974148688}{51278255203}a^{8}-\frac{435492478097}{102556510406}a^{7}-\frac{541092179346}{51278255203}a^{6}+\frac{12361191636}{403765789}a^{5}-\frac{2055319408888}{51278255203}a^{4}+\frac{1134420632432}{51278255203}a^{3}-\frac{1943006712373}{51278255203}a^{2}+\frac{57572559511}{2698855537}a+\frac{246113838893}{51278255203}, 15797673723102556510406a1161120782939102556510406a10+199320639711102556510406a916491472142351278255203a87992863567951278255203a731534864741251278255203a6+6750538650403765789a5127057843380851278255203a4+103192870639151278255203a3146189556026951278255203a2+378631952242698855537a+15522704394151278255203\frac{15797673723}{102556510406}a^{11}-\frac{61120782939}{102556510406}a^{10}+\frac{199320639711}{102556510406}a^{9}-\frac{164914721423}{51278255203}a^{8}-\frac{79928635679}{51278255203}a^{7}-\frac{315348647412}{51278255203}a^{6}+\frac{6750538650}{403765789}a^{5}-\frac{1270578433808}{51278255203}a^{4}+\frac{1031928706391}{51278255203}a^{3}-\frac{1461895560269}{51278255203}a^{2}+\frac{37863195224}{2698855537}a+\frac{155227043941}{51278255203}, 79002637251278255203a11+332178395102556510406a10801643957102556510406a9+29404847539102556510406a84455438447451278255203a712282604418351278255203a6374831052403765789a5+17087641269951278255203a414452253589351278255203a39481249740051278255203a2+57693209942698855537a722461950951278255203\frac{790026372}{51278255203}a^{11}+\frac{332178395}{102556510406}a^{10}-\frac{801643957}{102556510406}a^{9}+\frac{29404847539}{102556510406}a^{8}-\frac{44554384474}{51278255203}a^{7}-\frac{122826044183}{51278255203}a^{6}-\frac{374831052}{403765789}a^{5}+\frac{170876412699}{51278255203}a^{4}-\frac{144522535893}{51278255203}a^{3}-\frac{94812497400}{51278255203}a^{2}+\frac{5769320994}{2698855537}a-\frac{7224619509}{51278255203} Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  86961.9671975 86961.9671975
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(24(2π)486961.9671975224492085992834072576(1.02316289221 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 86961.9671975 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 1.02316289221 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 - 36*x^7 + 116*x^6 - 174*x^5 + 134*x^4 - 176*x^3 + 106*x^2 + 8*x - 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 - 36*x^7 + 116*x^6 - 174*x^5 + 134*x^4 - 176*x^3 + 106*x^2 + 8*x - 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 - 36*x^7 + 116*x^6 - 174*x^5 + 134*x^4 - 176*x^3 + 106*x^2 + 8*x - 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 - 36*x^7 + 116*x^6 - 174*x^5 + 134*x^4 - 176*x^3 + 106*x^2 + 8*x - 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S42:D4S_4^2:D_4 (as 12T260):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 4608
The 65 conjugacy class representatives for S42:D4S_4^2:D_4
Character table for S42:D4S_4^2:D_4

Intermediate fields

Q(17)\Q(\sqrt{17}) , 6.4.45435424.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 12.2.561510749104259072.6

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R 62{\href{/padicField/3.6.0.1}{6} }^{2} 8,4{\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} } 8,22{\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2} 62{\href{/padicField/11.6.0.1}{6} }^{2} 6,4,2{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} } R 25,12{\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2} 8,22{\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2} 8,4{\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} } 43{\href{/padicField/31.4.0.1}{4} }^{3} 42,22{\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2} 12{\href{/padicField/41.12.0.1}{12} } 6,32{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2} 4,2,16{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{6} 4,22,14{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4} 6,22,12{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.2.3.4x2+10x^{2} + 10221133C2C_2[3][3]
2.4.6.2x4+4x3+16x2+24x+12x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12222266C22C_2^2[3]2[3]^{2}
2.6.8.4x6+2x4+2x3+6x^{6} + 2 x^{4} + 2 x^{3} + 6661188S4×C2S_4\times C_2[4/3,4/3,2]32[4/3, 4/3, 2]_{3}^{2}
1717 Copy content Toggle raw display 17.12.11.2x12+34x^{12} + 341212111111S3×C4S_3 \times C_4[ ]122[\ ]_{12}^{2}