Properties

Label 31.4.0.1
Base \(\Q_{31}\)
Degree \(4\)
e \(1\)
f \(4\)
c \(0\)
Galois group $C_4$ (as 4T1)

Related objects

Learn more

Defining polynomial

\(x^{4} - 2 x + 17\)  Toggle raw display

Invariants

Base field: $\Q_{31}$
Degree $d$: $4$
Ramification exponent $e$: $1$
Residue field degree $f$: $4$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{31}(\sqrt{3})$
Root number: $1$
$|\Gal(K/\Q_{ 31 })|$: $4$
This field is Galois and abelian over $\Q_{31}.$

Intermediate fields

$\Q_{31}(\sqrt{3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:31.4.0.1 $\cong \Q_{31}(t)$ where $t$ is a root of \( x^{4} - 2 x + 17 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 31 \)$\ \in\Q_{31}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{4} - x^{3} + 2 x^{2} + 4 x + 3$