Properties

Label 12T260
Order \(4608\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $260$
CHM label :  $[2S_{4}^{2}]2=2S_{4}wr2$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (6,12), (2,6,10)(4,8,12), (2,10)(4,8), (1,12)(2,3)(4,5)(6,7)(8,9)(10,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 3
32:  $C_2^2 \wr C_2$
72:  $C_3^2:D_4$
144:  12T77
288:  12T125
1152:  $S_4\wr C_2$
2304:  12T235

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: None

Degree 6: $C_3^2:D_4$

Low degree siblings

12T260 x 7, 16T1648 x 8, 24T7465 x 4, 24T7517 x 4, 24T7518 x 4, 24T7519 x 4, 24T7520 x 8, 24T7521 x 8, 24T7522 x 8, 24T7523 x 8, 24T7524 x 8, 24T7525 x 8, 24T7526 x 8, 24T7527 x 8, 24T7528 x 4, 24T7529 x 8, 24T7530 x 4, 32T396906 x 4, 32T396907 x 8, 32T396908 x 4, 32T396909 x 4, 32T396910 x 4, 32T396911 x 4, 36T5190 x 4, 36T5191 x 8, 36T5271 x 4, 36T5540 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4608=2^{9} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.