Normalized defining polynomial
\( x^{12} - 6 x^{11} - 377 x^{10} + 492 x^{9} + 173850 x^{8} - 694074 x^{7} - 21012689 x^{6} + \cdots - 208255070079 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(10393875914015693226294553808347398144\)
\(\medspace = 2^{16}\cdot 3^{6}\cdot 7^{8}\cdot 181^{10}\)
|
| |
| Root discriminant: | \(1215.43\) |
| |
| Galois root discriminant: | $2^{4/3}3^{1/2}7^{5/6}181^{5/6}\approx 1681.0519469631765$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(181\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6}a^{6}-\frac{1}{2}a^{5}+\frac{1}{3}a^{4}-\frac{1}{2}a^{3}-\frac{1}{3}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{6}a^{7}-\frac{1}{6}a^{5}-\frac{1}{2}a^{4}+\frac{1}{6}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{114}a^{8}-\frac{1}{114}a^{7}-\frac{4}{57}a^{6}+\frac{37}{114}a^{5}-\frac{11}{57}a^{4}+\frac{41}{114}a^{3}+\frac{29}{114}a^{2}-\frac{4}{19}a+\frac{2}{19}$, $\frac{1}{798}a^{9}+\frac{1}{798}a^{8}-\frac{8}{133}a^{7}+\frac{1}{399}a^{6}+\frac{11}{266}a^{5}-\frac{269}{798}a^{4}+\frac{8}{399}a^{3}-\frac{1}{19}a^{2}+\frac{1}{38}a-\frac{7}{38}$, $\frac{1}{4784444910}a^{10}-\frac{144216}{265802495}a^{9}+\frac{1975046}{2392222455}a^{8}+\frac{8409349}{227830710}a^{7}+\frac{73555571}{1594814970}a^{6}-\frac{27327911}{1594814970}a^{5}-\frac{30928589}{4784444910}a^{4}-\frac{52499131}{1594814970}a^{3}+\frac{114369419}{341746065}a^{2}+\frac{43656697}{113915355}a+\frac{90456743}{227830710}$, $\frac{1}{18\cdots 10}a^{11}-\frac{22\cdots 44}{31\cdots 85}a^{10}-\frac{53\cdots 28}{90\cdots 19}a^{9}+\frac{61\cdots 76}{44\cdots 55}a^{8}+\frac{15\cdots 34}{28\cdots 35}a^{7}-\frac{78\cdots 72}{10\cdots 95}a^{6}+\frac{69\cdots 19}{18\cdots 10}a^{5}+\frac{23\cdots 57}{62\cdots 70}a^{4}-\frac{30\cdots 63}{94\cdots 55}a^{3}-\frac{37\cdots 67}{89\cdots 10}a^{2}+\frac{34\cdots 72}{44\cdots 55}a+\frac{14\cdots 79}{29\cdots 70}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{12}$, which has order $24$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{52\cdots 64}{82\cdots 01}a^{11}+\frac{22\cdots 74}{82\cdots 01}a^{10}+\frac{18\cdots 84}{75\cdots 91}a^{9}+\frac{43\cdots 43}{39\cdots 81}a^{8}-\frac{27\cdots 84}{25\cdots 97}a^{7}+\frac{70\cdots 22}{27\cdots 67}a^{6}+\frac{11\cdots 64}{82\cdots 01}a^{5}+\frac{19\cdots 10}{82\cdots 01}a^{4}-\frac{35\cdots 56}{11\cdots 43}a^{3}+\frac{42\cdots 74}{39\cdots 81}a^{2}+\frac{16\cdots 00}{39\cdots 81}a-\frac{41\cdots 34}{39\cdots 81}$, $\frac{27\cdots 76}{26\cdots 55}a^{11}+\frac{13\cdots 29}{52\cdots 10}a^{10}+\frac{94\cdots 56}{23\cdots 05}a^{9}+\frac{68\cdots 99}{74\cdots 30}a^{8}-\frac{14\cdots 34}{79\cdots 35}a^{7}+\frac{12\cdots 57}{11\cdots 58}a^{6}+\frac{56\cdots 07}{26\cdots 55}a^{5}+\frac{40\cdots 39}{52\cdots 10}a^{4}-\frac{17\cdots 14}{37\cdots 65}a^{3}+\frac{14\cdots 33}{14\cdots 46}a^{2}+\frac{27\cdots 76}{41\cdots 85}a-\frac{20\cdots 11}{24\cdots 10}$, $\frac{974857603955534}{16\cdots 05}a^{11}-\frac{51\cdots 38}{49\cdots 15}a^{10}+\frac{43\cdots 61}{16\cdots 05}a^{9}+\frac{72\cdots 09}{14\cdots 90}a^{8}-\frac{15\cdots 14}{16\cdots 05}a^{7}-\frac{33\cdots 97}{16\cdots 05}a^{6}+\frac{49\cdots 43}{33\cdots 81}a^{5}+\frac{30\cdots 99}{99\cdots 30}a^{4}-\frac{91\cdots 58}{47\cdots 83}a^{3}-\frac{37\cdots 01}{70\cdots 45}a^{2}+\frac{42\cdots 48}{23\cdots 15}a-\frac{62\cdots 39}{47\cdots 30}$, $\frac{75\cdots 90}{29\cdots 17}a^{11}-\frac{21\cdots 29}{17\cdots 02}a^{10}-\frac{54\cdots 70}{57\cdots 87}a^{9}+\frac{73\cdots 90}{62\cdots 57}a^{8}+\frac{24\cdots 91}{57\cdots 87}a^{7}-\frac{15\cdots 33}{12\cdots 14}a^{6}-\frac{34\cdots 82}{62\cdots 57}a^{5}-\frac{38\cdots 08}{62\cdots 57}a^{4}+\frac{76\cdots 67}{62\cdots 57}a^{3}-\frac{29\cdots 33}{59\cdots 34}a^{2}-\frac{51\cdots 23}{29\cdots 17}a+\frac{13\cdots 24}{29\cdots 17}$, $\frac{80\cdots 51}{20\cdots 19}a^{11}-\frac{11\cdots 95}{41\cdots 38}a^{10}+\frac{49\cdots 55}{38\cdots 58}a^{9}+\frac{38\cdots 25}{20\cdots 19}a^{8}-\frac{91\cdots 78}{19\cdots 29}a^{7}-\frac{11\cdots 49}{22\cdots 02}a^{6}+\frac{12\cdots 65}{41\cdots 38}a^{5}+\frac{26\cdots 03}{29\cdots 17}a^{4}-\frac{14\cdots 57}{29\cdots 17}a^{3}-\frac{48\cdots 09}{59\cdots 34}a^{2}+\frac{28\cdots 17}{59\cdots 34}a-\frac{11\cdots 52}{29\cdots 17}$, $\frac{21\cdots 63}{18\cdots 10}a^{11}+\frac{44\cdots 21}{53\cdots 06}a^{10}-\frac{16\cdots 02}{85\cdots 05}a^{9}+\frac{63\cdots 17}{37\cdots 42}a^{8}-\frac{47\cdots 83}{16\cdots 82}a^{7}+\frac{86\cdots 01}{27\cdots 30}a^{6}-\frac{86\cdots 43}{94\cdots 55}a^{5}+\frac{48\cdots 37}{53\cdots 06}a^{4}-\frac{39\cdots 21}{18\cdots 10}a^{3}-\frac{25\cdots 83}{26\cdots 30}a^{2}+\frac{30\cdots 04}{89\cdots 51}a-\frac{22\cdots 77}{89\cdots 10}$, $\frac{35\cdots 21}{95\cdots 45}a^{11}+\frac{12\cdots 59}{57\cdots 70}a^{10}-\frac{26\cdots 83}{19\cdots 90}a^{9}-\frac{20\cdots 26}{28\cdots 35}a^{8}+\frac{16\cdots 93}{28\cdots 35}a^{7}+\frac{77\cdots 33}{57\cdots 70}a^{6}-\frac{11\cdots 93}{16\cdots 82}a^{5}-\frac{12\cdots 98}{28\cdots 35}a^{4}+\frac{84\cdots 98}{57\cdots 87}a^{3}+\frac{17\cdots 41}{27\cdots 70}a^{2}-\frac{34\cdots 39}{27\cdots 70}a+\frac{15\cdots 63}{13\cdots 35}$
|
| |
| Regulator: | \( 56411363733056.39 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 56411363733056.39 \cdot 6}{2\cdot\sqrt{10393875914015693226294553808347398144}}\cr\approx \mathstrut & 1.30899668214625 \end{aligned}\] (assuming GRH)
Galois group
$S_3\times D_6$ (as 12T37):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $S_3\times D_6$ |
| Character table for $S_3\times D_6$ |
Intermediate fields
| \(\Q(\sqrt{543}) \), \(\Q(\sqrt{1267}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{21}, \sqrt{543})\), 6.2.65794968577029888.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.16a1.5 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 143 x^{6} + 132 x^{5} + 102 x^{4} + 64 x^{3} + 33 x^{2} + 12 x + 5$ | $6$ | $2$ | $16$ | $D_6$ | $$[2]_{3}^{2}$$ |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(7\)
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
| 7.3.2.3a1.2 | $x^{6} + 12 x^{5} + 36 x^{4} + 8 x^{3} + 48 x^{2} + 23$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(181\)
| 181.2.6.10a1.4 | $x^{12} + 1062 x^{11} + 469947 x^{10} + 110915280 x^{9} + 14726353155 x^{8} + 1043025098382 x^{7} + 30808510677349 x^{6} + 2086050196764 x^{5} + 58905412620 x^{4} + 887322240 x^{3} + 7519152 x^{2} + 42672 x + 27757$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $$[\ ]_{6}^{2}$$ |