Normalized defining polynomial
\( x^{12} - 4x^{11} + 4x^{10} + 4x^{9} - 17x^{8} + 16x^{7} - 12x^{6} + 16x^{5} - 12x^{4} + 8x^{3} - 4x^{2} - 2 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[2, 5]$ |
| |
| Discriminant: |
\(-72185515343872\)
\(\medspace = -\,2^{32}\cdot 7^{5}\)
|
| |
| Root discriminant: | \(14.28\) |
| |
| Galois root discriminant: | $2^{3}7^{5/6}\approx 40.48912147837109$ | ||
| Ramified primes: |
\(2\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{38391}a^{11}-\frac{4370}{38391}a^{10}-\frac{13700}{38391}a^{9}+\frac{13823}{38391}a^{8}-\frac{583}{38391}a^{7}-\frac{14006}{38391}a^{6}+\frac{6305}{12797}a^{5}+\frac{2988}{12797}a^{4}-\frac{3610}{38391}a^{3}-\frac{4636}{38391}a^{2}-\frac{4082}{38391}a+\frac{8588}{38391}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2897}{38391}a^{11}-\frac{1219}{12797}a^{10}-\frac{18200}{38391}a^{9}+\frac{41809}{38391}a^{8}-\frac{8447}{12797}a^{7}-\frac{28558}{12797}a^{6}+\frac{102377}{38391}a^{5}-\frac{85984}{38391}a^{4}+\frac{11790}{12797}a^{3}-\frac{44830}{38391}a^{2}+\frac{37265}{38391}a-\frac{10729}{38391}$, $\frac{10127}{38391}a^{11}-\frac{28558}{38391}a^{10}+\frac{5174}{38391}a^{9}+\frac{50326}{38391}a^{8}-\frac{107000}{38391}a^{7}+\frac{15983}{38391}a^{6}-\frac{31889}{12797}a^{5}+\frac{32962}{12797}a^{4}-\frac{48629}{38391}a^{3}+\frac{3421}{38391}a^{2}+\frac{8693}{38391}a+\frac{15061}{38391}$, $\frac{1606}{38391}a^{11}+\frac{7333}{38391}a^{10}-\frac{42548}{38391}a^{9}+\frac{48131}{38391}a^{8}+\frac{23477}{38391}a^{7}-\frac{188465}{38391}a^{6}+\frac{54591}{12797}a^{5}-\frac{51335}{12797}a^{4}+\frac{114554}{38391}a^{3}-\frac{112735}{38391}a^{2}+\frac{85951}{38391}a+\frac{9959}{38391}$, $\frac{5894}{38391}a^{11}-\frac{22013}{38391}a^{10}+\frac{4689}{12797}a^{9}+\frac{45451}{38391}a^{8}-\frac{108982}{38391}a^{7}+\frac{40474}{38391}a^{6}+\frac{23140}{38391}a^{5}+\frac{33394}{38391}a^{4}-\frac{59914}{38391}a^{3}-\frac{18059}{12797}a^{2}+\frac{50240}{38391}a+\frac{10377}{12797}$, $\frac{1210}{12797}a^{11}-\frac{20414}{38391}a^{10}+\frac{36533}{38391}a^{9}+\frac{151}{12797}a^{8}-\frac{107161}{38391}a^{7}+\frac{167062}{38391}a^{6}-\frac{84034}{38391}a^{5}+\frac{34940}{38391}a^{4}-\frac{76954}{38391}a^{3}+\frac{88954}{38391}a^{2}+\frac{13219}{12797}a-\frac{11849}{38391}$, $\frac{2395}{12797}a^{11}-\frac{11001}{12797}a^{10}+\frac{12805}{12797}a^{9}+\frac{13043}{12797}a^{8}-\frac{52600}{12797}a^{7}+\frac{47755}{12797}a^{6}-\frac{12752}{12797}a^{5}+\frac{33805}{12797}a^{4}-\frac{46366}{12797}a^{3}+\frac{4576}{12797}a^{2}+\frac{518}{12797}a+\frac{3481}{12797}$
|
| |
| Regulator: | \( 339.925030123 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 339.925030123 \cdot 1}{2\cdot\sqrt{72185515343872}}\cr\approx \mathstrut & 0.783587413588 \end{aligned}\]
Galois group
$C_6^2:C_4$ (as 12T82):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_6^2:C_4$ |
| Character table for $C_6^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.1792.1, 6.2.802816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{5}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.8b1.6 | $x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ |
| 2.1.8.24c1.61 | $x^{8} + 8 x^{7} + 4 x^{6} + 2 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $$[2, 3, 4]$$ | |
|
\(7\)
| 7.3.1.0a1.1 | $x^{3} + 6 x^{2} + 4$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 7.3.1.0a1.1 | $x^{3} + 6 x^{2} + 4$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 7.1.6.5a1.2 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |