Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $82$ | |
| Group : | $C_3:S_3.D_4$ | |
| CHM label : | $[(1/4.2^{3})^{2}]F_{36}(6)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(4,5)(8,9), (1,5,9)(4,8,12), (2,10)(3,11)(4,8)(5,9), (1,7)(2,8,10,4)(3,9,11,5)(6,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 36: $C_3^2:C_4$ 72: 12T40 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $C_3^2:C_4$
Low degree siblings
12T82 x 7, 24T272 x 4, 24T273 x 4, 24T274 x 4, 36T126 x 2, 36T141 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 4, 8)( 5, 9)( 6,10)( 7,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 2, 3)( 6, 7)(10,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $18$ | $2$ | $( 2, 3)( 4, 8)( 5, 9)( 6,11)( 7,10)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 6,10)( 3, 7,11)$ |
| $ 6, 1, 1, 1, 1, 1, 1 $ | $4$ | $6$ | $( 2, 7,10, 3, 6,11)$ |
| $ 4, 4, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3,12)( 4, 7, 8,11)( 5, 6, 9,10)$ |
| $ 4, 4, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3,12)( 4,11, 8, 7)( 5,10, 9, 6)$ |
| $ 4, 4, 4 $ | $18$ | $4$ | $( 1, 2, 4, 7)( 3, 5, 6,12)( 8,11, 9,10)$ |
| $ 4, 4, 4 $ | $18$ | $4$ | $( 1, 2, 4,11)( 3, 5,10,12)( 6, 8, 7, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 3)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 6, 2, 2, 2 $ | $4$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2, 3)( 6, 7)(10,11)$ |
| $ 6, 3, 3 $ | $4$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2, 6,10)( 3, 7,11)$ |
| $ 6, 6 $ | $4$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2, 7,10, 3, 6,11)$ |
| $ 6, 3, 3 $ | $4$ | $6$ | $( 1, 4, 9,12, 5, 8)( 2,10, 6)( 3,11, 7)$ |
| $ 3, 3, 2, 2, 2 $ | $4$ | $6$ | $( 1, 5, 9)( 2, 3)( 4, 8,12)( 6, 7)(10,11)$ |
| $ 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 136] |
| Character table: |
2 4 4 3 3 2 2 3 3 3 3 4 2 2 2 2 2 2 4
3 2 . 2 . 2 2 . . . . . 2 2 2 2 2 2 2
1a 2a 2b 2c 3a 6a 4a 4b 4c 4d 2d 6b 6c 6d 6e 6f 3b 2e
2P 1a 1a 1a 1a 3a 3a 2a 2a 2d 2d 1a 3a 3b 3b 3b 3a 3b 1a
3P 1a 2a 2b 2c 1a 2b 4b 4a 4d 4c 2d 2e 2b 2e 2b 2b 1a 2e
5P 1a 2a 2b 2c 3a 6a 4a 4b 4c 4d 2d 6b 6c 6d 6e 6f 3b 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 -1 -1 1 1 1 1 -1 1 -1 -1 1 1
X.3 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1
X.4 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1
X.5 1 -1 -1 1 1 -1 A -A -A A -1 1 -1 1 -1 -1 1 1
X.6 1 -1 -1 1 1 -1 -A A A -A -1 1 -1 1 -1 -1 1 1
X.7 1 -1 1 -1 1 1 A -A A -A -1 1 1 1 1 1 1 1
X.8 1 -1 1 -1 1 1 -A A -A A -1 1 1 1 1 1 1 1
X.9 2 -2 . . 2 . . . . . 2 -2 . -2 . . 2 -2
X.10 2 2 . . 2 . . . . . -2 -2 . -2 . . 2 -2
X.11 4 . -4 . -2 2 . . . . . -2 -1 1 -1 2 1 4
X.12 4 . -4 . 1 -1 . . . . . 1 2 -2 2 -1 -2 4
X.13 4 . 4 . -2 -2 . . . . . -2 1 1 1 -2 1 4
X.14 4 . 4 . 1 1 . . . . . 1 -2 -2 -2 1 -2 4
X.15 4 . . . -2 . . . . . . 2 -3 -1 3 . 1 -4
X.16 4 . . . -2 . . . . . . 2 3 -1 -3 . 1 -4
X.17 4 . . . 1 -3 . . . . . -1 . 2 . 3 -2 -4
X.18 4 . . . 1 3 . . . . . -1 . 2 . -3 -2 -4
A = -E(4)
= -Sqrt(-1) = -i
|