Show commands: Magma
Group invariants
| Abstract group: | $C_6^2:C_4$ |
| |
| Order: | $144=2^{4} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $82$ |
| |
| CHM label: | $[(1/4.2^{3})^{2}]F_{36}(6)$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,12)(4,5)(8,9)$, $(1,5,9)(4,8,12)$, $(2,10)(3,11)(4,8)(5,9)$, $(1,7)(2,8,10,4)(3,9,11,5)(6,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $36$: $C_3^2:C_4$ $72$: 12T40 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $C_3^2:C_4$
Low degree siblings
12T82 x 7, 24T272 x 4, 24T273 x 4, 24T274 x 4, 36T126 x 2, 36T141 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| 2B | $2^{3},1^{6}$ | $2$ | $2$ | $3$ | $( 1,12)( 4, 5)( 8, 9)$ |
| 2C | $2^{4},1^{4}$ | $9$ | $2$ | $4$ | $( 1, 5)( 4,12)( 6,10)( 7,11)$ |
| 2D | $2^{6}$ | $9$ | $2$ | $6$ | $( 1, 8)( 2, 3)( 4, 5)( 6,11)( 7,10)( 9,12)$ |
| 2E | $2^{5},1^{2}$ | $18$ | $2$ | $5$ | $( 1, 4)( 5,12)( 6,10)( 7,11)( 8, 9)$ |
| 3A | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 1, 5, 9)( 4, 8,12)$ |
| 3B | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| 4A1 | $4^{2},2^{2}$ | $18$ | $4$ | $8$ | $( 1, 6, 5,10)( 2, 9)( 3, 8)( 4,11,12, 7)$ |
| 4A-1 | $4^{2},2^{2}$ | $18$ | $4$ | $8$ | $( 1,10, 5, 6)( 2, 9)( 3, 8)( 4, 7,12,11)$ |
| 4B1 | $4^{3}$ | $18$ | $4$ | $9$ | $( 1, 6, 8,11)( 2, 4, 3, 5)( 7, 9,10,12)$ |
| 4B-1 | $4^{3}$ | $18$ | $4$ | $9$ | $( 1,11, 8, 6)( 2, 5, 3, 4)( 7,12,10, 9)$ |
| 6A | $6,1^{6}$ | $4$ | $6$ | $5$ | $( 1, 8, 5,12, 9, 4)$ |
| 6B | $6^{2}$ | $4$ | $6$ | $10$ | $( 1, 4, 9,12, 5, 8)( 2, 7,10, 3, 6,11)$ |
| 6C | $6,3^{2}$ | $4$ | $6$ | $9$ | $( 1, 4, 9,12, 5, 8)( 2,10, 6)( 3,11, 7)$ |
| 6D | $3^{2},2^{3}$ | $4$ | $6$ | $7$ | $( 1,12)( 2, 6,10)( 3, 7,11)( 4, 5)( 8, 9)$ |
| 6E | $6,2^{3}$ | $4$ | $6$ | $8$ | $( 1,12)( 2, 7,10, 3, 6,11)( 4, 5)( 8, 9)$ |
| 6F | $6,3^{2}$ | $4$ | $6$ | $9$ | $( 1, 8, 5,12, 9, 4)( 2,10, 6)( 3,11, 7)$ |
Malle's constant $a(G)$: $1/3$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 6B | 6C | 6D | 6E | 6F | ||
| Size | 1 | 1 | 2 | 9 | 9 | 18 | 4 | 4 | 18 | 18 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 2C | 2C | 2D | 2D | 3A | 3B | 3B | 3A | 3A | 3B | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 1A | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2B | 2A | 2B | 2B | 2A | 2B | |
| Type | |||||||||||||||||||
| 144.136.1a | R | ||||||||||||||||||
| 144.136.1b | R | ||||||||||||||||||
| 144.136.1c | R | ||||||||||||||||||
| 144.136.1d | R | ||||||||||||||||||
| 144.136.1e1 | C | ||||||||||||||||||
| 144.136.1e2 | C | ||||||||||||||||||
| 144.136.1f1 | C | ||||||||||||||||||
| 144.136.1f2 | C | ||||||||||||||||||
| 144.136.2a | R | ||||||||||||||||||
| 144.136.2b | R | ||||||||||||||||||
| 144.136.4a | R | ||||||||||||||||||
| 144.136.4b | R | ||||||||||||||||||
| 144.136.4c | R | ||||||||||||||||||
| 144.136.4d | R | ||||||||||||||||||
| 144.136.4e | R | ||||||||||||||||||
| 144.136.4f | R | ||||||||||||||||||
| 144.136.4g | R | ||||||||||||||||||
| 144.136.4h | R |
Regular extensions
Data not computed